Arsenic in Rice Milk, Rice Krispies, and Brown Rice Syrup

I recommend people switch away from using rice milk

For kids and teens, the amount of arsenic flowing through their bodies was found to be about 15 percent higher for each quarter cup of rice consumed per day, and a similar link was found in adults. A study of pregnant women found that consuming about a half cup of cooked rice per day could raise urine arsenic levels as much as drinking a liter of arsenic-contaminated water at the current upper federal safety limit. These findings “suggest that many people in the United States may be exposed to potentially harmful levels of arsenic through rice consumption.” which I explore in my video Arsenic in Rice Milk, Rice Krispies, and Brown Rice Syrup.

Do you know where Americans get most of their rice arsenic? From Rice Krispies, though brown rice crisps cereal may have twice as much, as I discuss in my video Arsenic in Rice Milk, Rice Krispies, and Brown Rice Syrup.

“Organic brown rice syrup (OBRS) is used as a sweetener in organic food products as an alternative to high-fructose corn syrup.” Big mistake, as organic brown rice syrup products “may introduce significant concentrations” of toxic arsenic into people’s diets. For example, two energy chews sweetened with brown rice syrup might hit the provisional upper daily arsenic intake based on the water standards.

“Toddler formulas with added organic brown rice syrup have 20 times higher levels of inorganic [toxic] arsenic than regular formulas,” and in older children, thanks to brown rice syrup, a few cereal bars a day “could pose a very high cancer risk.”

What about rice milk? A consensus statement of both the European and North American societies for pediatric nutrition recommends the “avoidance of rice drinks for infants and young children,” and, generally, toxic “inorganic arsenic intake in infancy and childhood should be as low as possible.”

To this end, the United Kingdom has banned the consumption of rice milk for young children, a notion with which Consumer Reports concurred, recommending no servings a week of rice milk for children and no more than half a cup a day for adults, as you can see at 1:56 in my video.

The arsenic in various brands of rice milk ranges wildly—in fact, there’s a 15-fold difference between the highest and lowest contamination, suggesting manufacturers could make low arsenic rice milk if they wanted. As you can see at 2:16 in my video, Consumer Reports found rice drinks from Pacific and Rice Dream brands were right about average, though, for Rice Dream, it appears the vanilla or chocolate flavors may be lower. It doesn’t seem we have anything to worry about with rice vinegar, but rice pasta and rice cakes end up similar to pure rice in terms of arsenic levels, which makes sense because that’s pretty much what they are—pure rice. However, pasta is boiled, so we’d expect the levels to be cut 40 to 60 percent, like when you boil and drain rice.

If you just couldn’t live without rice milk for some reason, you could make your own using lower arsenic rice, like brown basmati from India, Pakistan, or California, but then your homemade rice milk might have even less nutrition, as most of the commercial brands are at least fortified. Better options might be soy, oat, hemp, or almond milk, though you don’t want kids to be drinking too much almond milk. There have been a few case reports of little kids drinking four cups a day and running into kidney stone problems due to its relatively high oxalate content, which averages about five times more than soy milk. More on oxalates in my video series starting with Oxalates in Spinach and Kidney Stones: Should We Be Concerned?

I have about 40 videos that touch on soy milk, discussing such topics as how it may normalize development in girls and reduce breast cancer risk, as well reduce prostate cancer risk in men. Some of the latest science on soy milk includes an association with better knee x-rays, suggesting protection from osteoarthritis, and an interventional study suggesting improved gut health by boosting the growth of good bacteria. However, drinking 3 quarts a day, which is 10 to 12 daily cups, for a year may inflame your liver, but two cups a day can have an extraordinary effect on your cholesterol, causing a whopping 25 percent drop in bad cholesterol after just 21 days.

An ounce and a half of almonds, about a handful, each day, can drop LDL cholesterol 13 percent in six weeks and reduce abdominal fat, though a cup of almond milk only contains about ten almonds, which is less than a third of what was used in the study. So, it’s not clear if almond milk helps much, but there was a study on oat milk compared to rice milk. As you can see at 4:37 in my video, five weeks of oat milk lowered bad cholesterol, whereas rice milk didn’t, and even increased triglycerides and may bump blood pressure a bit. However, the oat milk only dropped LDL about 5 percent and that was with three cups a day. As plant-based alternatives go, it appears soy milk wins the day.

So, why drink rice milk at all when there are such better options? There really isn’t much nutrition in rice milk. In fact, there are case reports of severe malnutrition in toddlers whose diets were centered around rice milk due to multiple food allergies. Infants and toddlers have increased protein requirements compared to adults, so if the bulk of a child’s diet is rice milk, coconut milk, potato milk, or almond milk, they may not get enough, as you can see at 5:23 in my video. In fact, cases of kwashiorkor—that bloated-belly protein- and calorie-deficient state of malnutrition—due to rice milk have been reported in Ethiopia…and Atlanta, Georgia, because literally 99 percent of the child’s diet was rice milk. So, these malnutrition cases were not because they drank rice milk, but rather because they drank rice milk nearly exclusively. I just use these examples to illustrate the relative lack of nutrition in rice milk. If you’re going to choose a milk alternative, you might as well go for one that has less arsenic—and more nutrition.

I have released several videos on soy milk, but only one on almond milk video so far: Prostate Cancer and Organic Milk vs. Almond Milk. I plan on producing many more on choosing between various milk options, so stay tuned.


If you’ve missed any of the useful material on dietary arsenic I’ve also shared, please see:

The final four videos in this series take all of this information and try to distill it into practical recommendations:

In health,

Michael Greger, M.D.

PS: If you haven’t yet, you can subscribe to my free videos here and watch my live presentations:

 

Arsenic in Infant Rice Cereal

When it comes to rice and rice-based products, pediatric nutrition authorities have recommended that arsenic intake should be as low as possible.

“The US Food and Drug Administration (FDA) has been monitoring the arsenic content in foods” for decades, yet despite the “well-established science describing the health risks associated with arsenic exposure, no standards have been set limiting the amount of arsenic allowable in foods” in the United States. In 2001, the EPA “adopted a new stricter standard for arsenic in drinking water,” and in 2013, the FDA proposed a legal limit for apple juice. “There are still no standards for arsenic in food products despite the fact that food sources are our main source of exposure.”

Unlike the United States, China has standards. As of 2014, China set a maximum threshold of inorganic arsenic at 150 parts per billion, stricter than the World Health Organization’s limit of 200 ppb. In the United States, a 200 ppb limit wouldn’t change the cancer risk much. If we had China’s safety limits of 150 ppb, though, cancer risk would be reduced up to 23 percent and a maximum threshold of 100 ppb would lower cancer risk up to 47 percent—but that could seriously affect the rice industry. In other words, U.S. rice is so contaminated with arsenic that if a safety standard that really cut down on cancer risk were set, it “would wipe out the U.S. rice market.” However, with no limits, what’s the incentive for the rice industry to change its practices? Setting arsenic limits would not only directly protect consumers but also encourage the industry to stop planting rice paddies on arsenic-contaminated land.

Those cancer estimates are based on arsenic-contaminated water studies. Might the arsenic in rice somehow have a different effect? You don’t know…until you put it to the test. We know rice has a lot of toxic arsenic that urine studies have shown we absorb into our body, but there hadn’t been any studies demonstrating “deleterious health impacts” specific to rice arsenic—until now. Since arsenic causes bladder cancer, the researchers figured they would see what kind of DNA mutations the urine of rice eaters can have on human bladder cells growing in a petri dish. And, indeed, they clearly demonstrated that eating a lot of arsenic-contaminated rice every day can “give rise to significant amounts of genetic damage,” the kind that‘s associated with cancer. Yes, but the study used pretty contaminated rice. However, only about 10 percent of the rice in certain parts of Asia might ever reach those levels of contamination, though a quarter of rice in parts of Europe might and more half in the United States, making for considerable public health implications.

So, “there remains little mystery surrounding the health risks associated with arsenic levels in rice. The remaining mystery is why long-overdue standards for arsenic levels in rice have not been set by the FDA” in the United States, but that may be changing. In 2016, the FDA proposed setting a limit on toxic arsenic—at least in infant rice cereal, which I discuss in my video Arsenic in Infant Rice Cereal.

As you can see at 3:24 in my video, infants and children under four years of age average the highest rice intake, in part because they eat about three times the amount of food in relation to their body size, so there’s an especially “urgent need for regulatory limits” on toxic arsenic in baby food.

Pediatric nutrition authorities have recommended that when it comes to rice and rice-based products, “arsenic intake should be as low as possible,” but how about as early as possible? Approximately 90 percent of pregnant women eat rice, which may end up having “adverse health effects” on the baby.

You can estimate how much rice the mother ate while pregnant by analyzing arsenic levels in the infant’s toenail clippings. “Specifically, an increase of 1/4 cup of rice per day was associated with a 16.9% increase in infants toenail [arsenic] concentration,” which indicates that arsenic in rice can be passed along to the fetus. What might that arsenic do? A quarter cup of rice worth of arsenic has been associated with low birth weight, increased respiratory infections, and, above that, a 5- to 6-point reduction in IQ, among other issues. So, “based on the FDA’s findings, it would be prudent for pregnant women to consume a variety of foods, including varied grains (such as wheat, oats, and barley),” which is code for cut down on rice. Saying eat less of anything, after all, is bad for business.

Once the baby is weaning, “what’s a parent to do?” Asks Consumer Reports, “To reduce arsenic risks, we recommend that babies eat no more than 1 serving of infant rice cereal per day on average. And their diets should include cereals made of wheat, oatmeal, or corn grits, which contain significantly lower levels of arsenic”—that is, rely on other grains, which are much less contaminated than rice. As the American Academy of Pediatrics has emphasized, “there is no demonstrated benefit of rice cereal over those made with other grains such as oat, barley, and multigrain cereals, all of which have lower arsenic levels than rice cereal.” As you can see at 5:28 in my video, reducing consumption of infant rice cereal to just two servings per week could have an even more dramatic effect on reducing risk.

 The proposed limit on toxic arsenic in infant rice cereals would end up removing about half of the products off the shelves. The FDA analyzed more than 500 infant and toddler foods, and the highest levels of toxic arsenic were found in organic brown rice cereals and “Toddler Puffs.” Based on the wording in the report, these puffs appear to be from the Happy Baby brand. Not-so-happy baby if they suffer brain damage or grow up to get cancer. A single serving could expose infants to twice the tolerable arsenic intake set by the EPA for water. I contacted the Happy Baby company and was told they “are not able to provide any comments” on the FDA’s results.

“Eliminating all rice and rice products from the diets of infants and small children up to 6 years old could reduce the lifetime cancer risk from inorganic arsenic in rice and rice products by 6% and 23% respectively.” That is, there would be a 6 percent lower chance of developing lung or bladder cancer later in life if infants stopped, and a 23 percent lower chance if young kids stopped. However, switching to other grains is a move described as “drastic and dramatic,” creating “a huge crisis”—for the rice industry, presumably—and therefore “not feasible at all.”

I was hoping Happy Baby, upon learning of the concerning FDA arsenic toddler puffs data (regardless of whether the data were about its brand or not) would have kicked its own testing and potential remediation into high gear like Lundberg did (see Which Brands and Sources of Rice Have the Least Arsenic?). But, unfortunately, in my email correspondence with the company, I got no sense that it did.


For more videos on this topic, see:

And here are five more:

In health,

Michael Greger, M.D.

PS: If you haven’t yet, you can subscribe to my free videos here and watch my live presentations:

Which Brands and Sources of Rice Have the Least Arsenic?

Arsenic levels were tested in 5,800 rice samples from 25 countries.The arsenic found in five servings of rice a week poses a hundred times the acceptable cancer risk. What did the rice industry have to say about that? When the story first broke in the media that U.S. rice had some of the highest arsenic levels in the world, the USA Rice Federation said, “Enough nonsense about arsenic already!” in the August 9, 2005, issue of USA Rice Daily, its daily newsletter. The study, in its mind, was “not only inaccurate in the highest degree, but also maliciously untrue.” One of the researchers responded, “By not addressing this problem [of arsenic] that has been ignored for decades, the U.S. cotton-belt rice industry is doing itself an injustice. “Had the problem been addressed in the past, given that it is well known that arsenic in paddy soils was a problem in the U.S….safe soils would have been identified and low grain arsenic rice varieties developed.” Instead, arsenic-resistant varieties have been developed that build up excessive levels of arsenic without dying themselves. I discuss arsenic levels in rice in my video Which Brands and Sources of Rice Have the Least Arsenic?.

Not all rice producers have been so dismissive, though. After a subsequent Consumer Reports exposé, one rice company detailed “how it is taking matters into its own hands.” Lundberg Farms started testing hundreds of samples of its rice to share the results with the FDA. “We’re committed to providing safe food,” said the CEO, “to really listening to our consumers, and dealing with this problem very openly….” Lundberg Farms isn’t just sharing its results with the FDA, but with everyone.

If you visit its website or go to 1:37 in my video, you can see it apparently followed through on its testing promise for its brown rice. Lundberg Farms use parts per million (ppm) instead of parts per billion (ppb) to make it look better than it is, but compared with the average U.S. brown rice level of 154 ppb, Lundberg does do better. In fact, at 80 ppb, its aromatic brown rice, presumably its brown basmati and brown jasmine, averages less than national white rice levels, as do, apparently, Lundberg’s red and black rices, at 90 ppb. In fact, none of its samples even reached the average U.S. brown rice level.

Consumer Reports found most other brands to be pretty comparable to the U.S. average arsenic levels in brown rice, as you can see at 2:15 in my video, including Uncle Ben’s and Walmart’s Great Value brand. Whole Foods, however, scored the worst with its 365 Everyday Value long grain brown rice, about a third higher than these others and exceeding the national average.

In the largest review to date, based on 5,800 rice samples from 25 countries, the highest total arsenic average came from the United States. U.S. studies averaged overall about double that of rice out of Asia, with the high levels in the United States blamed on “the heavy [historical] use of arsenic-based pesticides.” But arsenic levels were not the same across the United States. Yes, U.S. rice averages twice the arsenic of Asian rice and nearly all rice samples tested in upstate New York that were imported from India or Pakistan had arsenic levels lower than 95 percent of domestically produced rice. But, “[r]ice grown in the U.S. showed the widest overall range…and the largest number of outliers,” due primarily to where it was grown, as you can see at 3:01 in my video. There is significantly more arsenic in Texas and Arkansas rice than rice from California. California rice is comparable to rice produced around the rest of the world. These are presumably some of the data that led Consumer Reports to suggest brown basmati from California, India, or Pakistan might be among the safer rice choices.If the arsenic is from pesticides, would organic rice have less than conventionally grown rice? No, because arsenic pesticides were banned about 30 years ago. It’s just that 30,000 tons of arsenic chemicals had already been dumped onto cotton fields in the southern United States, “so it is understandable that arsenic residues still remain in the environment” even if you don’t add an ounce of new pesticides. That’s why the industry specifically selects for arsenic-resistant varieties of rice plants in the South. If only there were arsenic-resistant humans.

What about other brands of rice? That was the subject of Which Rice Has Less Arsenic: Black, Brown, Red, White, or Wild?.


For even more background, see:

 You may also be interested in:

Kudos to Consumers Union, the wonderful organization that publishes Consumer Reports, for its pioneering work on this and so many other topics.

In health,

Michael Greger, M.D.

PS: If you haven’t yet, you can subscribe to my free videos here and watch my live presentations:

 

Abbott’s FreeStyle Libre 2 Receives Health Canada’s Approval for Adults and Children with Diabetes

Shots:

  • Abbott’s next-generation, sensor-based glucose monitoring technology, FreeStyle Libre 2, received Health Canada’s approval for adults & children with diabetes
  • The system continuously measures glucose data every minute with customizable, optional real-time alarms to alert users when their glucose is high/low without scanning
  • The technology sustains performance for ~14days, providing trends, insights & actionable data on a reader or with the FreeStyle LibreLink mobile app. FreeStyle Libre 2 will be available for people with diabetes aged ≥4yrs. in Canada in the coming months

Click here ­to­ read full press release/ article | Ref: PRNewswire | Image: BioSpace

The post Abbott’s FreeStyle Libre 2 Receives Health Canada’s Approval for Adults and Children with Diabetes first appeared on PharmaShots.

The Effects of Too Much Arsenic in the Diet

Even at low-level exposure, arsenic is not just a class I carcinogen, but may also impair our immune function and increase our risk of cardiovascular disease and diabetes.

When people hear about arsenic, they think of it as an acute poison, and, indeed, a tiny amount—a hundred milligrams, about one-tenth the weight of a paperclip—could kill you in an hour. But, there is also chronic arsenic poisoning, where even a dose 10,000 times as small can be harmful if you’re exposed day-after-day for years at a time as I discuss in my video The Effects of Too Much Arsenic in the Diet. Chief among the concerns is cancer.

Arsenic is classified as a class I carcinogen, which is the highest level and includes things known to cause cancer in humans. Other class I carcinogens are asbestos, cigarette smoke, formaldehyde, plutonium, and processed meat (the consumption of bacon, ham, hot dogs, deli meat, and the like). So, arsenic is pretty bad, to say the least, implicated in tens of thousands—or even hundreds of thousands—of cancer cases worldwide every year.

Of course, cancer is our number-two killer. What about heart disease, our leading cause of death? “Long-term exposure to low to moderate arsenic levels was associated with cardiovascular disease incidence and mortality,” meaning heart attacks and strokes.

Arsenic is also considered an immunotoxicant, meaning it’s toxic to our immune system. How do we know that? There’s a virus called varicella, which is what causes chickenpox—the first time we get it. Our immune system is able to stamp it down but not stamp it out. The virus retreats into our nerve cells where it lies in wait for our immune function to dip. And, when it does, the virus re-emerges and causes a disease called shingles. We’ve all been exposed to the virus, but only about one in three of us will get shingles because our immune system is able to keep it at bay. However, the virus can slip its muzzle as we get older or immunosuppressed, for instance, if we’re given arsenic chemotherapy. Shingles is a common side effect, because the arsenic drugs not only kill the cancer but also some of our immune cells, too. That’s at high doses, though. Might even low doses of arsenic, like the kind we’re exposed to in our daily diet, impact our immune function? Researchers tested the levels of arsenic in the urine of thousands of Americans, along with their levels of anti-virus antibodies, and, indeed, they found that the more arsenic the subjects had flowing through their bodies, the lower their defenses.

And, if you’re pregnant, arsenic can pass to your baby, possibly increasing the risk of miscarriage or infant mortality, and “may affect an infant’s immune development and susceptibility to infections early in life.” Indeed, a study out of New Hampshire on infant infections in relation to prenatal arsenic exposure found that the more arsenic the mom was exposed to during pregnancy, the higher the baby’s risk of infection during infancy. However, “it’s unknown whether arsenic-induced epigenetic changes are transgenerational”—that is, whether changes in gene expression can impact the health of not only your own children but your grandchildren as well. Regardless, arsenic exposure isn’t good for mom’s own health, as it is associated with increasing blood pressure.

Hold on. If arsenic suppresses immune system function, then, as a silver lining, would we, for example, have fewer allergies, which is a kind of over-reaction of the immune system? Apparently not. Those with higher arsenic levels tend to have higher rates of food allergies, tend not to sleep as well, and tend not to feel as well. When people were asked how they would rate their health, those reporting “excellent” or “very good” tended to have lower levels of arsenic, compared to those who reported their general health condition as “good,” “fair,” or “poor,” who tended to have higher arsenic levels.

What about diabetes? You can see the results of two dozen population studies on arsenic exposure and confirmed diabetes at 4:07 in my video. Any result above one suggests increased risk for diabetes, and any result below one suggests lower risk. The findings? “Our results support an association between ingested arsenic and DM [diabetes] in humans.” Population studies can’t prove cause and effect, though. “While it would be nice to demonstrate a cause and effect relationship…is it necessary?”

We know arsenic is a carcinogen. We know it causes cancer. What more do we need to take steps to decrease our exposure?

Where is arsenic found in our diet? See my videos Where Does the Arsenic in Chicken Come From?  and Where Does the Arsenic in Rice, Mushrooms, and Wine Come From?.


 Ready for a deep dive into the rice issue? Check out:

In health,

Michael Greger, M.D.

PS: If you haven’t yet, you can subscribe to my free videos here and watch my live presentations:

 

 

 

Where Does the Arsenic in Rice, Mushrooms, and Wine Come From?

What happens when our crops are grown in soil contaminated with arsenic-based pesticides and arsenic drug-laced chicken manure?

When arsenic-containing drugs are fed to chickens, not only does the arsenic grow out into their feathers, which are then fed back to them as a slaughterhouse byproduct, but the arsenic can also get into their tissues and then into our tissues when we eat eggs or meat, a cycle depicted at the start of my video Where Does the Arsenic in Rice, Mushrooms, and Wine Come From?. This explains why national studies have found that those who eat more poultry have tended to have more arsenic flowing through their bodies. Why would the industry do that? In modern poultry farms, often called CAFOs for concentrated animal feeding operations, there can be 200,000 birds under one roof and the floors of these buildings become covered with feces. While this so-called factory farming decreases costs, it also increases the risk of disease. That’s where arsenic-containing drugs and other antibiotic feed additives can come in: to try to cut down the spread of disease in such an unnatural environment. If you’re feeling a little smug because you don’t eat chicken, what do you think happens to the poop?

As depicted at 1:17 in my video, from chicken manure, the arsenic from the drugs in the animal feed can get into our crops, into the air, and into the groundwater, and find its way into our bodies whether we eat meat or not. Yes, but how much arsenic are we really talking about? Well, we raise billions of chickens a year, and, if, historically, the vast majority were fed arsenic, then, if you do the math, we’re talking about dumping a half million pounds of arsenic into the environment every year—much of it onto our crops or shoveled directly into the mouths of other farm animals.

Most of the arsenic in chicken waste is water soluble, so, there are certainly concerns about it seeping into the groundwater. But, if it’s used as a fertilizer, what about our food? Studies on the levels of arsenic in the U.S. food supply dating back to the 1970s identified two foods, fish aside, with the highest levels—chicken and rice—both of which can accumulate arsenic in the same way. Deliver an arsenic-containing drug like roxarsone to chickens, and it ends up in their manure, which ends up in the soil, which ends up in our pilaf. “Rice is [now] the primary source of As [arsenic] exposure in a non seafood diet.”

I was surprised to learn that mushrooms are in the top-five food sources of arsenic, but then it made sense after I found out that poultry litter is commonly used as a starting material to grow mushrooms in the United States. As you can see at 2:58 in my video, over the years, the arsenic content in mushrooms has rivaled arsenic concentration in rice, though people tend to eat more rice than mushrooms on a daily basis. Arsenic levels in mushrooms seemed to be dipping starting about a decade ago, which was confirmed in a 2016 paper that looked at a dozen different types of mushrooms: plain white button mushrooms, cremini, portobello, shiitake, trumpet, oyster, nameko, maitake, alba clamshell, brown clamshell, and chanterelle. Now, mushrooms are only averaging about half the arsenic content as rice, as you can see at 3:37 in my video.

Just like some mushrooms have less arsenic than others, some rice has less. Rice grown in California has 40 percent less arsenic than rice grown in Arkansas, Louisiana, Mississippi, Missouri, and Texas. Why? Well, arsenic-based pesticides had been used for more than a century on millions of acres of cotton fields, a practice noted to be “dangerous” back in 1927. Arsenic pesticides are now effectively banned, so it’s not simply a matter of buying organic versus conventional rice because millions of pounds of arsenic had been laid down in the soil well before the rice was even planted.

The rice industry is well aware of this. There’s an arsenic-toxicity disorder in rice called “straighthead,” where rice planted in soil too heavily contaminated with arsenic doesn’t grow right. So, instead of choosing cleaner cropland, they just developed arsenic-resistant strains of rice. Now, lots of arsenic can build up in rice without the plant getting hurt. Can the same be said, however, for the rice consumer?

It’s the same story with wine. Arsenic pesticides were used, decade after decade, and even though they’ve since been banned, arsenic can still be sucked up from the soil, leading to “the pervasive presence of arsenic in [American] wine [that] can pose a potential health risk.” Curiously, the researchers sum up their article by saying that “chronic arsenic exposure is known to lower IQ in children,” but if kids are drinking that much wine, arsenic toxicity is probably the least of their worries.

Hold on. Chickens are being fed arsenic-based drugs? See Where Does the Arsenic in Chicken Come From? to find out more.


 I expect the arsenic-in-rice issue brought up a lot of questions, and giving you answers is exactly why I’m here! Check out:

In health,

Michael Greger, M.D.

PS: If you haven’t yet, you can subscribe to my free videos here and watch my live presentations:

Why Was Chicken the Primary Source of Arsenic Exposure in Children?

What was the National Chicken Council’s response to public health authorities calling for the industry to stop feeding arsenic-based drugs to poultry?

“Dietary practices influence our exposure to pesticides, toxic heavy metals, persistent organic pollutants, and industrial pollutants….A diet high in fish and other animal products, for example, results in greater exposure to persistent organic compounds and metals than does a plant-based diet because these compounds bioaccumulate up the food chain.” Researchers at UC Davis analyzed the diets of children and adults in California to see just how bad things have gotten.

Cancer benchmark levels were exceeded by all children—100 percent of children—for arsenic, the banned pesticides dieldrin and DDT, metabolite DDE, as well as dioxins, and not just by a little. As you can see at 0:51 in my video Where Does the Arsenic in Chicken Come From?, researchers found more than a hundred times the acceptable daily exposure for arsenic in preschoolers, school-aged children, parents, and older adults, about ten times the acceptable levels for various pesticides, and up to a thousand times the daily dose for dioxins. Where are all these toxins coming from?

The number-one source of dioxins in the diets of Californian preschoolers, kids, parents, and grandparents appears to be dairy for all age groups, followed by meat, and then white potatoes, refined grains, mushrooms, poultry, and fish.

These days, our DDT legacy is also mostly from dairy. Dieldrin was created as a safer alternative to DDT, but it was banned just two years later, in 1974, though it’s still found in our bodies, mostly thanks to dairy, meat, and, evidently, cucumbers.

Chlordane made it into the 1980s before being banned, though we’re still exposed through dairy (and cukes). Lead is — foodwise — also mostly from dairy, and mercury is not surprisingly mostly from tuna and other seafood. But the primary source of arsenic in children? Surprisingly, mostly from chicken. Why?

Let me tell you a tale of arsenic in chicken. Arsenic is “well known as a poison by anyone who reads mysteries or the history of the Borgias, and with its long and colourful history, arsenic is not something that people want in their food.” So, when a biostatistics student went to the USDA in 2000 in search of a project for his master’s degree, he decided to look into it. He found a startling difference: Arsenic levels in chicken were three times higher than in other meats. His veterinary colleagues weren’t at all surprised and explained that four different types of arsenic-containing antibiotic drugs are fed to poultry—and have been fed to them since 1944.

“While arsenic-based drugs had been fed to poultry since the 1940s, recognition of this source of exposure [for humans] only occurred after appropriate statistical analysis of the data”—that is, after this student churned through the data. It was published in 2004 and expanded upon in 2006. The National Chicken Council (NCC) was none too pleased, saying lots of foods are contaminated with arsenic. “By focusing specifically on chicken, IATP [the Institute for Agriculture and Trade Policy] makes it clear that it is producing a publicity-oriented document focused on the objective of forcing [chicken] producers to stop using these safe and effective products”—by which the NCC means these arsenic-containing drugs. In fact, the NCC admits to using them but says we don’t need to worry because chicken producers use organic arsenic, “not the inorganic form made infamous in ‘Arsenic and Old Lace.’” Okay, so we don’t need to worry—until, apparently, we cook it. When chicken is cooked, it appears that some of the arsenic drug in the meat turns into the ”Arsenic and Old Lace” variety. So, the Poison-Free Poultry Act of 2009 was introduced into Congress, flopped, and was followed by the subsequent introduction of the Poison-Free Poultry Act of 2011. Did the second attempt fare any better? No, legislators once again said pish posh to poison-poor poultry. So, in 2013, a coalition of nine organizations got together and sued the FDA, and by December 31, 2015, all arsenic-containing poultry drugs were withdrawn. As of 2016, arsenic is no longer to be fed to chickens. The bad news is that without giving birds the arsenic-containing drug roxarsone, chicken may lose some of its “appealing pink color.”

In the end, the poultry industry got away with exposing the American public to arsenic for 72 years. “It should be noted that the European Union has never approved drugs containing arsenic for animal consumption” in the first place, saying, Hmm, feed our animals arsenic? No thanks, nein danke, no grazie, non, merci.

Europe has also long since banned the “urgent threat to human health” posed by feeding farm animals millions of pounds of human antibiotics. As you can see at 5:30 in my video, feeding chickens en masse literally tons of drugs like tetracyclines and penicillins to fatten them faster is a problem that gets worse every year instead of better and dates back to 1951 when drug companies whipped out the ALL CAPS in advertisements,  promising “PROFITS…several times higher!”, a dangerous practice the poultry industry has gotten away with for 68 years…and counting.


If you don’t eat poultry and are feeling a little cocky, you may want to check out my 12-video series on arsenic in rice before you gloat too much:

Think feeding arsenic to chickens is weird? Check out Illegal Drugs in Chicken Feathers.

And for more on the critical public health threat posed by antibiotic overuse in animal agriculture, see:

In health,

Michael Greger, M.D.

PS: If you haven’t yet, you can subscribe to my free videos here and watch my live presentations:

Biomarin Reports the US FDA’s Acceptance of Vosoritide’s NDA to Treat Children with Achondroplasia

Shots:

  • The acceptance marks the first marketing application accepted for achondroplasia in the US with an anticipated PDUFA date as of Aug 20, 2021. The US FDA is not planning to hold an advisory committee meeting to discuss the application
  • Additionally, the company is expecting to complete enrollment in a P-II study assessing vosoritide in ~70 infants and young children with achondroplasia, aged 0-<60mos., for 52wks.
  • Vosoritide (qd) is an investigational injection analog of C-type Natriuretic Peptide (CNP) for children with achondroplasia and has received the US FDA’s & EMA’s ODD for the same

Click here to­ read the full press release/ article | Ref: PRNewswire | Image: BioMarin Careers

The post Biomarin Reports the US FDA’s Acceptance of Vosoritide’s NDA to Treat Children with Achondroplasia first appeared on PharmaShots.

No Purveyor of Unhealthy Products Wants the Public to Know the Truth

In 2011, Denmark introduced the world’s first tax on saturated fat. “After only 15 months, however, the fat tax was abolished,” due to massive pressure from farming and food company interests. “Public health advocates are weak in tackling the issues of corporate power…A well-used approach for alcohol, tobacco, and, more recently, food-related corporate interests is to shift the focus away from health. This involves reframing a fat or soft drinks tax as an issue of consumer rights and a debate over the role of the state in ‘nannying’ or restricting people’s choices.” I discuss this in my video The Food Industry Wants the Public Confused About Nutrition.

“The ‘Nanny State’ is a term that is usually used in a pejorative way to discourage governments from introducing legislation or regulation that might undermine the power or actions of industry or individuals…Public health advocacy work is regularly undermined by the ‘Nanny State’ phrase.” But those complaining about the governmental manipulation of people’s choices hypocritically tend to be fine with corporations doing the same thing. One could argue that “public health is being undermined by the ‘Nanny Industry’…[that] uses fear of government regulation to maintain its own dominance, to maintain its profits and to do so at a significant financial and social cost to the community and to public health.”

The tobacco industry offers the classic example, touting “personal responsibility,” which has a certain philosophical appeal. As long as people understand the risks, they should be free to do whatever they want with their bodies. Now, some argue that risk-taking affects others, but if you have the right to put your own life at risk, shouldn’t you have the right to aggrieve your parents, widow your spouse, and orphan your children? Then, there’s the social cost argument. People’s bad decisions can cost the society as a whole, whose tax dollars may have to care for them. “The independent, individualist motorcyclist, helmetless and free on the open road, becomes the most dependent of individuals in the spinal injury ward.”

But, for the sake of argument, let’s forget these spillover effects, the so-called externalities. If someone understands the hazards, shouldn’t they be able to do whatever they want? Well, “first, it assumes individuals can access accurate and balanced information relevant to their decisions…but deliberate industry interference has often created situations where consumers have access only to incomplete and inaccurate information…For decades, tobacco companies successfully suppressed or undermined scientific evidence of smoking’s dangers and down played the public health concerns to which this information gave rise.” Don’t worry your little head, said the nanny companies. “Analyses of documents…have revealed decades of deception and manipulation by the tobacco industry, and confirmed deliberate targeting of…children.” Indeed, it has “marketed and sold [its] lethal products with zeal…and without regard for the human tragedy….”

“The tobacco industry’s deliberate strategy of challenging scientific evidence undermines smokers’ ability to understand the harms smoking poses” and, as such, undermines the whole concept that smoking is a fully informed choice. “Tobacco companies have denied smokers truthful information…yet held smokers [accountable] for incurring diseases that will cause half of them to die prematurely. In contexts such as these, government intervention is vital to protect consumers from predatory industries….”

Is the food industry any different? “The public is bombarded with information and it is hard to tell which is true, which is false and which is merely exaggerated. Foods are sold without clarity about the nutritional content or harmful effects.” Remember how the food industry spent a billion dollars making sure the easy-to-understand traffic-light labeling system on food, which you can see at 4:26 in my video, never saw the light of day and was replaced by indecipherable labeling? That’s ten times more money than the drug industry spends on lobbying in the United States. It’s in the food industry’s interest to have the public confused about nutrition.

How confused are we about nutrition? “Head Start teachers are responsible for providing nutrition education to over 1 million low-income children annually…” When 181 Head Start teachers were put to the test, only about 4 out of the 181 answered at least four of the five nutrition knowledge questions correctly. Most, for example, could not correctly answer the question, “What has the most calories: protein, carbohydrate, or fat?” Not a single teacher could answer all five nutrition questions correctly. While they valued nutrition education, 54 percent “agreed that it was hard to know which nutrition information to believe,” and the food industry wants to keep it that way. A quarter of the teachers did not consume any fruits or vegetables the previous day, though half did have french fries and soda, and a quarter consumed fried meat the day before. Not surprisingly, 55 percent of the teachers were not just overweight but obese.

When even the teachers are confused, something must be done. No purveyor of unhealthy products wants the public to know the truth. “An interesting example comes from the US ‘Fairness Doctrine’ and the tobacco advertising experience of the 1960s. Before tobacco advertising was banned from television in the US, a court ruling in 1967 required that tobacco companies funded one health ad about smoking for every four tobacco TV advertisements they placed. Rather than face this corrective advertising, the tobacco industry took their own advertising off television.” They knew they couldn’t compete with the truth. Just “the threat of corrective advertising even on a one-to-four basis was sufficient to make the tobacco companies withdraw their own advertising.” They needed to keep the public in the dark.

The trans fat story is an excellent example of this. For more on that, see my videos Controversy Over the Trans Fat Ban and Banning Trans Fat in Processed Foods but Not Animal Fat.

Isn’t the Fairness Doctrine example amazing? Just goes to show how powerful the truth can be. If you want to support my efforts to spread evidence-based nutrition, you can donate to our 501c3 nonprofit here. You may also want to support Balanced, an ally organization NutritionFacts.org helped launch to put this evidence into practice.


More tobacco industry parallels can be found in Big Food Using the Tobacco Industry Playbook, American Medical Association Complicity with Big Tobacco, and How Smoking in 1959 Is Like Eating in 2016.

Want to know more about that saturated fat tax idea? See Would Taxing Unhealthy Foods Improve Public Health?.

Also check:

In health,

Michael Greger, M.D.

PS: If you haven’t yet, you can subscribe to my free videos here and watch my live presentations:

Vitamin C for Male Infertility and Lead Poisoning?

What is the clinical relevance of vitamin C among lead-exposed infertile men? Compared to controls, lead battery industry workers given 1,000 mg of vitamin C every workday for three months experienced “a significant increase in sperm motility and sperm count, as well as decrease in abnormal sperm,” and “a significant reduction in the incidence of sperm DNA fragmentation,” that is, damaged sperm DNA. Okay, but the ideal endpoint would be bouncing baby boys and girls. Enter this extraordinary little study from the University of Texas from more than 30 years ago.

Twenty-seven men with fertile wives had been trying to have kids for years to no avail. Twenty of them were given 1,000 mg of vitamin C a day for two months, and 7 acted as controls and didn’t get any vitamin C. The researchers followed up at the end of the 60 days. By then, every single one of the wives of each of the 20 men who had gotten the vitamin C had became pregnant—20 out of 20! After years of frustration, boom: 100-percent pregnant. What’s more, not a single one of the wives of men in the control group got pregnant. Rarely does one see these kinds of black-and-white results in the medical literature for any intervention.

Is the vitamin C lowering the oxidative stress from the lead, or is it actually lowering the level of lead? Sure, antioxidant supplementation can have antioxidant effects, but it may fail to actually lower lead levels in the blood. Now, this was in a group of workers who were breathing lead day in and day out, and the way vitamin C may work is by simply blocking the “intestinal absorption of lead.” An earlier study showed vitamin C supplementation apparently cut lead levels by a third within six months, but that was with a whopping dose of 2 g with added zinc. Another small study found the same 30 percent drop with just 500 mg a day, no zinc, and in only one month. But neither of those studies had a control group of subjects who didn’t take anything, so we don’t know if their levels would have fallen anyway.

Similarly, there is an almost too-good-to-be-true study on the role of vitamin C in scavenging lead toxicity from “biosystems,” by which they meant children. They got 250 to 500 mg a day of vitamin C for a few months, and shaved hair samples every month saw up to a 69 percent decline in lead levels. Researchers repeated it in two other small groups of kids and saw the same amazing kind of drops in every single child. But maybe lead levels were just dropping throughout the whole community during that time? Without measuring lead levels in a control group of kids not taking vitamin C, we can’t be sure.

As I illustrate from 3:17 in my video Yellow Bell Peppers for Male Infertility and Lead Poisoning?, with eight weeks of vitamin C, lead levels dropped in the blood and rose in the urine. One could conclude that the vitamin C was pulling lead out of the body, but the same thing happened in the placebo group: Blood levels dropped, and urine levels rose. So, it had nothing to do with the vitamin C at all. That’s why it’s always important to have a control group.

The same applies with studies that appeared to show no benefit. For example, 36 battery manufacturing workers were studied. Each was given vitamin C, yet there was no change in their lead levels. But, maybe their co-workers suffered a big increase in lead levels during that same time period, and the vitamin C was actually successful in keeping the subjects’ levels from rising. You don’t know without a control group.

That’s why studies like “The effects of vitamin C supplementation on blood and hair levels of cadmium, lead, and mercury” are so important. Vitamin C versus an identical-looking sugar pill placebo. The result? The vitamin C failed to help, which really put a damper on enthusiasm for using vitamin C for lead poisoning until a now-famous study was published in 1999 that showed that vitamin C supplementation could lead to a decrease in blood levels. As you can see at 4:32 in my video, after four weeks of taking a placebo, not much change occurred in blood lead levels in the control group, which is what we’d expect. In contrast, the vitamin C group started out at about the same blood lead level as the control group, but within one week of taking 1,000 mg of vitamin C a day, lead levels dropped 81 percent. So, supplementation of vitamin C “may provide an economical and convenient method of reducing blood-lead levels, possibly by reducing the intestinal absorption of lead.”

The urine lead levels didn’t change, so it’s not as if the subjects were excreting more lead in their urine to bring down their blood levels. However, most of the lead in our blood is in the red blood cells, which are recycled in the liver and discharged through the bile into the gut where the lead could just get reabsorbed—unless, perhaps, you’ve got a lot of vitamin C in there to block the re-absorption. But 1,000 mg is a lot of vitamin C. Would something like 200 mg, which is just about how much vitamin C you’d get in an orange and a cup of broccoli or strawberries, work? The researchers tested that, too. The 200 mg group started out the same as the control and the 1,000 mg group, but blood lead levels didn’t really budge. Bummer! So, 1,000 mg seemed to work, but 200 mg didn’t. Isn’t 1,000 mg of vitamin C a bit unnatural, though? The RDA is only 60 mg. Well, actually, we may have evolved for millions of years getting closer to 600 mg a day—ten times the current RDA—because we were eating so many fruits and greens. Okay, but could you reach 1,000 mg of vitamin C without having to take pills? Yes! That’s the amount of vitamin C, for example, that can be found in three yellow bell peppers.


Other videos in my series on lead include:

Note that there is nothing special about yellow bell peppers—other than their extraordinary vitamin C content, that is. I just used them as a practical way to get 1,000 mg of vitamin C in whole-food form. They’re certainly easier than eating ten oranges!

Though, remember my video Peppers and Parkinson’s: The Benefits of Smoking Without the Risks? So, one would expect to get all the benefits of the 1,000 mg of vitamin C with benefits. Why not just take vitamin C supplements? See Do Vitamin C Supplements Prevent Colds but Cause Kidney Stones?.

If hundreds of milligrams a day of vitamin C sounds like a lot, check out What Is the Optimal Vitamin C intake?.

You may be interested in my vitamin C and cancer series:

Finally, for more on male fertility, see:

In health,

Michael Greger, M.D.

PS: If you haven’t yet, you can subscribe to my free videos here and watch my live presentations:

Can Vitamin C Supplements Help with Lead Poisoning?

“Even if a nutritional manipulation is proven effective in reducing blood lead levels, reliance on such an intervention places most of the burden for prevention on those most affected and least responsible for the underlying environmental causes of lead toxicity. Nutritional interventions, therefore, must never substitute for efforts to reduce lead exposure to safe levels. On the other hand, when used as an adjunct to environmental measures, some nutritional changes may prove to have benefits beyond any impact on lead toxicity.” For example, consumption of vitamin C-rich foods may help with “blood pressure, blood lipid profiles, and respiratory symptoms,” in addition to perhaps influencing “lead toxicity through an influence on absorption of lead, elimination of lead, transport within the body, tissue binding, or secondary mechanisms of toxicity,” that is, even just helping ameliorate some of the damage. But what is this based on?

In 1939, a remarkable study was published, entitled “Vitamin C treatment in lead poisoning,” in which 17 lead industry workers were given 100 mg of vitamin C a day, the amount found in one or two oranges, and “with practically all of them there was a marked gain in vigor, color of skin, cheerfulness, blood picture, appetite and ability to sleep well.” The 17 workers were chosen because they seemed to be in pretty bad shape and possibly even had scurvy, so it’s no wonder a little vitamin C helped. But vitamin C is an antioxidant, and oxidation is “an important mechanism underlying lead toxicity,” so it’s conceivable that it may have mediated some of the harm. But, the vitamin C didn’t appear to just reduce the damage from the lead—it also reduced the lead itself. As you can see from 1:43 in my video Can Vitamin C Help with Lead Poisoning?, the amount of lead in a painter’s urine over a period of a month after starting 200 mg of vitamin C a day exhibited a five-fold drop, suggesting he was absorbing less of the lead into his body. He was one of three painters researchers tried this on, and evidently all three painters’ levels dropped. The researchers concluded that those “exposed to lead…should be advised to include in their diet plenty of such rich sources of vitamin C as tomatoes (fresh or canned), raw cabbage, oranges or grapefruit, raw spinach (or even cooked, in very little water), raw turnips, green bell peppers, cantaloupe, etc.”

Now, this drop in lead in the subjects’ urine was seen with only three painters, and the study didn’t have a control group of painters who didn’t take vitamin C, so perhaps everyone’s lead levels would have dropped for some other reason or perhaps it was just a coincidence. You don’t know…until you put it to the test.

Those original data were so compelling that others were inspired to try to replicate them. I mean, if it actually worked, if vitamin C could help with lead poisoning, grapefruits could be handed out at the factory door! The earlier study didn’t have a good control group, but the researchers weren’t going to make that same mistake this time. In this study, half of the group got 100 mg of vitamin C a day—not just for a month but for a year—and the other group got nothing. The result? “Careful study of a large group of lead workers failed to reveal any effect of ascorbic acid vitamin C…on the lead concentration in the blood…or urine” (emphasis added). There was no difference in their physical condition and no changes in their blood work, so “no reason has been found for recommending the use of ascorbic acid vitamin C to minimize effects of lead absorption.” What a disappointment. It looked so promising!

Whenever I study a topic, I try to read the research chronologically so I can experience the discoveries as they happened throughout history. At this point, though, I was so tempted to jump to a recent review to see what had happened in the intervening 74 years since that first study was published, but I didn’t want to spoiler alert! myself, so I kept reading the papers sequentially. There were in vitro studies where researchers dripped antioxidants on lead exposed cells and it seemed to help, so they jumped on the cantaloupe bandwagon, too, but these were test tube studies.

The first population study was published in 1999, and, as you can see at 4:02 in my video, researchers did find that those with high vitamin C levels in their blood tended to have lower lead levels. Youths with the highest vitamin C levels had a nearly 90 percent lower prevalence of elevated blood lead levels compared to those with the lowest vitamin C levels. Now, this was a cross-sectional study, just a snapshot in time, so we don’t know if the vitamin C caused a drop in lead or if perhaps the lead caused a drop in vitamin C. Lead is a pro-oxidant, so maybe it ate up the vitamin C. And who has higher vitamin C levels? Those who can afford to have higher vitamin C levels and eat lots of fruits and vegetables. “It is also possible that higher ascorbic acid levels may represent healthier lifestyles or greater socio-economic status.” Indeed, maybe lower vitamin C levels are just a proxy for being poor, and that’s the real reason for higher lead levels.

There are lots of good reasons to be eating more fruits and vegetables, and we should be eating more spinach regardless, but it would be nice to know if vitamin C actually helps with lead poisoning. And, to know that, we need to put it to the test.

Unfortunately, most of the published interventions are not very helpful, with such titles as “Effects of dietary vitamin C supplementation on lead-treated sea cucumbers,….”  And, there is a surprising number of articles on the effects of vitamin C supplementation on mouse testicles. Why? Because lead may impair male fertility. Indeed, lead workers appear to have a reduced likelihood of fathering children, but this may in part be due to oxidative stress. In that case, how about giving an antioxidant, like vitamin C, and putting it to the test(es)? No, I’m not talking about rat testes or suggesting frog testes. Neither am I proposing crab testes. (I didn’t even know crabs had testicles!) Finally, here’s one to discuss: “Clinical relevance of vitamin C among lead-exposed infertile men.” A study of human men, which I will cover in Yellow Bell Peppers for Male Infertility and Lead Poisoning?.

I’m always conflicted about writing these kinds of blogs and producing videos like Can Vitamin C Help with Lead Poisoning?. I can imagine some just want “the answer,” but those with vested and commercial interests often exploit that natural impulse. This is problem with science in general, but perhaps particularly in nutrition. When it comes to something as life-or-death important as what to feed ourselves and our families we shouldn’t just follow someone’s opinions or beliefs on the matter. We should demand to see the science. That’s what I try to do: Present the available data as fairly and even-handedly as possible, and let you make up your own mind. You can imagine how easily someone could cherry-pick just one or two studies and present a distorted but compelling case for or against, in this case, vitamin C supplements. That’s why I feel it’s important to present each study in their historical context. Stay tuned for the thrilling conclusion in Yellow Bell Peppers for Male Infertility & Lead Poisoning?.


 For those of you who are thinking, Why should I care about lead? I don’t eat paint chips or use leaded gasoline. Anyway, what’s the big deal?, check out my full series of lead videos for information on how we got into this mess and some of the ways we can dig ourselves out:

In health,

Michael Greger, M.D.

PS: If you haven’t yet, you can subscribe to my free videos here and watch my live presentations:

Garlic Powder to Lower Lead Levels

There are so-called chelation drugs that can be taken for acute, life-threatening lead poisoning—for instance if your two-year-old swallowed one of the little lead weights her grandma was using while sewing curtains and the doctor happened to miss it on x-ray, so it stayed lodged inside her until she died with a blood lead level of 283 mcg/dcl, a case I discuss in my video Best Foods for Lead Poisoning: Chlorella, Cilantro, Tomatoes, Moringa?.

However, for lower grade, chronic lead poisoning, such as at levels under 45 μg/dL, there were no clear guidance as to whether these chelation drugs were effective. When they were put to the test, the drugs failed to bring down lead levels long term. Even when they worked initially, in dose after dose, the lead apparently continued to seep from the patients’ bones, and, by the end of the year, they ended up with the same lead levels as the sugar pill placebo group, as you can see at 0:50 in my video. It was no surprise, then, that even though blood lead levels dipped at the beginning, researchers found no improvements in cognitive function or development.

Since much of lead poisoning is preventable and the drugs don’t seem to work in most cases, that just underscores the need “to protect children from exposure to lead in the first place.” Despite the medical profession’s “best intentions to do something to help these kids…drug therapy is not the answer.” Yes, we need to redouble efforts to prevent lead poisoning in the first place, but what can we do for the kids who’ve already been exposed?

The currently approved method, these chelating drugs that bind and remove lead from our tissues, “lack[s]…safety and efficacy when conventional chelating agents are used.” So, what about dietary approaches? Plants produce phytochelatins. All higher plants possess the capacity to synthesize compounds that bind up heavy metals to protect themselves from the harmful effects, so what if we ate the plants? “Unlike other forms of treatment (e.g., pharmacotherapy with drugs), nutritional strategies carry the promise of a natural form of therapy that would presumably be cheap and with few to no side effects.” Yes, but would it work when the drugs didn’t?

We had learned that a meal could considerably cut down on lead absorption, but “the particular components of food intake that so dramatically reduce lead absorption” were uncertain at the time. Although the calcium content of the meal appeared to be part of it, milk didn’t seem to help and even made things worse. What about calcium supplements? Some assert that calcium supplements may help in reducing lead absorption in children, but “recommendations…must be based on evidence rather than conviction.” What’s more, those assertions are based in part on studies on rodents, and differences in calcium absorption and balance between rats and humans make extrapolation tricky. What you have to do is put it to the test. Researchers found that even an extra whopping 1,800 mg of calcium per day had no effect on blood lead levels. Therefore, the evidence doesn’t support conclusions that calcium supplements help.

What about whole foods? Reviews of dietary strategies to treat lead toxicity say to eat lots of tomatoes, berries, onions, garlic, and grapes, as they are natural antagonists to lead toxicity and therefore should be consumed on a regular basis. Remember those phytochelatins? Perhaps eating plants might help detoxify the lead in our own bodies or the bodies of those we eat.

These natural phytochelatin compounds work so well that we can use them to clean up pollution. For example, the green algae chlorella can suck up lead and hold onto it, so what if we ate it? If it can clean up polluted bodies of water, might it clean up our own polluted bodies? We don’t know, because we only have studies on mice, not men and women.

So, when you hear how chlorella detoxifies, they’re talking about the detoxification of rat testicles. Yes, a little sprinkle of chlorella might help your pet rat, or perhaps you could give them some black cumin seeds or give them a sprig of cilantro, but when you hear how cilantro detoxifies against heavy metals, I presume you don’t expect the researchers to be talking about studies in rodents. If we’re interested in science protecting our children, not just their pets, we’re out of luck.

The same is true with moringa, tomatoes, flaxseed oil, and sesame seed oil, as well as black grapes, and black, white, green, and red tea. There are simply no human studies to guide us.

Dietary strategies for the treatment of lead toxicity are often based on rodent studies, but, for tofu, at least, there was a population study of people that showed lower lead levels in men and women who ate more tofu. The researchers controlled for a whole bunch of factors, so it’s not as if tofu lovers were protected just because they smoked less or ate less meat, but you can’t control for everything.

Ideally, we’d have a randomized, placebo-controlled study. Researchers would take a group of people exposed to lead, split them into two groups, with half given food and the other half given some kind of identical placebo food, and see what happens. It’s easy to do this with drugs because you just use look-alike sugar pills as placebos so people don’t know which group they’re in, but how do you make placebo food? One way to do disguised food interventions is to use foods that are so potent they can be stuffed into a pill—like garlic. There had been various studies measuring the effects of garlic in rats and looking at garlic as a potential antidote for lead intoxication distributed among different mouse organs, but who eats mouse organs? One animal study did have some direct human relevance, though, looking at the effect of garlic on lead content in chicken tissues. The purpose was to “explore the possible use of garlic to clean up lead contents in chickens which”—like all of us on planet Earth—“had been exposed to lead pollution and consequently help to minimize the hazard” of lead-polluted chicken meat.

And…it worked! As you can see at 1:59 in my video Best Food for Lead Poisoning: Garlic, feeding garlic to chickens reduced lead levels in the “edible mass of chicken” by up to 75 percent or more. Because we live in a polluted world, even if you don’t give the chickens lead and raise them on distilled water, they still end up with some lead in their meat and giblets. But, if you actively feed them lead for a week, the levels get really high. When you give them the same amount of lead with a little garlic added, however, much less lead accumulates in their bodies.

What’s even more astonishing is that when researchers gave them the same amount of lead—but this time waited a week before giving them the garlic—it worked even better. “The value of garlic in reducing lead concentrations…was more pronounced when garlic was given as a post-treatment following the cessation of lead administration”—that is, after the lead was stopped and had already built up in their tissues. We used to think that “the beneficial effect of garlic against lead toxicity was primarily due to a reaction between lead and sulfur compounds in garlic” that would glom on to lead in the intestinal tract and flush it out of the body. But, what the study showed is that garlic appears to contain compounds that can actually pull lead not only out of the intestinal contents, but also out of the tissues of the body. So, the “results indicate that garlic contain chelating compounds capable of enhancing elimination of lead,” and “garlic feeding can be exploited to safeguard human consumers by minimizing lead concentrations in meat….”

If garlic is so effective at pulling lead out of chickens’ bodies, why not more directly exploit “garlic feeding” by eating it ourselves? Well, there had never been a study on the ability of garlic to help lead-exposed humans until…2012? (Actually, I’m embarrassed to say I missed it when the study was first published. That was back when I was just getting NutritionFacts.org up and running. Now that we have staff and a whole research team, hopefully important studies like this won’t slip through the cracks in the future.)

The study was a head-to-head comparison of the therapeutic effects of garlic versus a chelation therapy drug called D-penicillamine. One hundred and seventeen workers exposed to lead in the car battery industry were randomly assigned into one of two groups and, three times a day for one month, either got the drug or an eighth of a teaspoon of garlic powder compressed into a tablet, which is about the equivalent of two cloves of fresh garlic a day. As expected, the chelation drug reduced blood lead levels by about 20 percent—but so did the garlic. The garlic worked just as well as the drug and, of course, had fewer side effects. “Thus, garlic seems safer clinically and as effective,” but saying something is as effective as chelation therapy isn’t saying much. Remember how chelation drugs can lower blood levels in chronic lead poisoning, but they don’t actually improve neurological function?

Well, after treatment with garlic, significant clinical improvements were seen, including less irritability, fewer headaches, and improvements in reflexes and blood pressure, but these improvements were not seen in the drug group. They weren’t seen after treatment with the chelation therapy drug. So, garlic was safer and more effective. “Therefore, garlic can be recommended for the treatment of mild-to-moderate lead poisoning.


 There are also some human studieson vitamin C. Check out Can Vitamin C Help with Lead Poisoning?.

For even more lead videos, see:

To learn more about chlorella, see:

In health,

Michael Greger, M.D.

PS: If you haven’t yet, you can subscribe to my free videos here and watch my live presentations:

Eating to Block Lead Absorption

Intake of certain nutrients has been associated with lower lead levels in the body. For example, women with higher intake of thiamine, also called vitamin B1, tended to have lower blood lead levels, and the same was found for lead-exposed steel workers—and not just with thiamine, as “content of dietary fiber, iron, or thiamine intake each correlated inversely with blood lead concentrations in workers…” The thinking is that the fiber might glom onto the lead and flush it out of the body, the iron would inhibit the lead absorption, and the thiamine may accelerate lead removal through the bile. So, researchers suggest that eating lots of iron, fiber and especially thiamine-rich foods “may induce rapid removal and excretion of the lead from the tissues.” But thiamine’s never been put to the test by giving it to people to see if their lead levels drop. The closest I could find is a thiamine intervention for lead-intoxicated goats.
 

And much of the fiber data are just from test tube studies. In one, for example, researchers used simulated intestinal conditions, complete with “flasks” of feces, and both soluble and insoluble dietary fiber were able to bind up large amounts of mercury, cadmium, and lead to such an extent that they may have been able to block absorption in the small intestine. But, when our good gut flora then eat the fiber, some of the heavy metals may be re-released down in the colon, so it’s not completely fail safe. And, as with thiamine, there haven’t been controlled human studies.

But where is thiamine found? At 1:47 in my video How to Lower Lead Levels with Diet: Thiamine, Fiber, Iron, Fat, Fasting?, I feature a list of some of the healthiest sources of thiamine-rich foods that also contain fiber, which include highly concentrated, super healthy foods like beans and greens—foods we should all be eating anyway. So, even if thiamine- and fiber-rich foods don’t actually lower lead levels, we’ll still end up healthier.

What happened when iron was put to the test? It failed to improve the cognitive performance of lead-exposed children and failed to improve behavior or ADH symptoms, which is no surprise, because it also failed to bring down lead levels, as did zinc supplementation. It turns out that while iron may limit the absorption of lead, “it may also inhibit excretion of previously absorbed lead” that’s already in your body. What’s more, iron may not even inhibit lead absorption in the first place. That was based on rodent studies, and it turns out we’re not rodents.

We get the same story with zinc. It may have helped to protect rat testicles, but didn’t seem to help human children. “Nevertheless, iron is routinely prescribed in children with lead poisoning.” But, “given the lack of scientific evidence supporting the use of iron [supplementation] in…children with lead poisoning, its routine use should be re-examined.” Though, obviously, supplementation may help if you have an iron deficiency.

High fat intake has been identified as a nutritional condition that makes things worse for lead-exposed children. In fact, dietary fat has been associated with higher lead levels in cross-sectional, snapshot-in-time type studies, and there is a plausible biological mechanism: Dietary fat may boost lead absorption by stimulating extra bile, which in turn may contribute to lead absorption, but you really don’t know until you put it to the test.

In addition to testing iron, researchers also tested fat. They gave a group of intrepid volunteers a cocktail of radioactive lead and then, with a Geiger counter, measured how much radiation the subjects retained in their bodies. Drinking the lead with iron or zinc didn’t change anything, but adding about two teaspoons of vegetable oil boosted lead absorption into the body from about 60 percent up to around 75 percent, as you can see at 4:17 in my video.

The only thing that seemed to help, dropping lead absorption down to about 40 percent, was eating a light meal with the lead drink. What was the meal? Coffee and a donut. I think this is the first donut intervention I’ve ever seen with a positive outcome! Could it have been the coffee? Unlikely, because if anything, coffee drinking has been associated with a tiny increase in blood lead levels. If fat makes things worse, and the one sugar they tried didn’t help, the researchers figured that what made the difference was just eating food—any food—and not taking in lead on an empty stomach. And, indeed, if you repeat the study with a whole meal, lead absorption doesn’t just drop from 60 percent to 40 percent—it drops all the way down to just 4 percent! That’s extraordinary. That means it’s 15 times worse to ingest lead on an empty stomach.

Lead given 12 hours before a meal was absorbed at about 60 percent, so most of it was absorbed. When the same amount of lead was given three hours after a meal and also seven hours after a meal, most of it was absorbed at those times, too. But, if you get some food in your stomach within a few hours of lead exposure, you can suppress the absorption of some or nearly all of the lead you ingested, which you can see at 0:11 in my video How to Lower Lead Levels with Diet: Breakfast, Whole Grains, Milk, Tofu?.

This is why it’s critical to get the lead out of our tap water. Although it’s estimated that most of our lead exposure comes from food, rather than water, it’s not what we eat that matters, but what we absorb. If 90 percent of the lead in food is blocked from absorption by the very fact that it’s in food, 10 to 20 times more lead could be absorbed into your bloodstream simply by consuming the same amount of lead in water drank on an empty stomach.

And, since children empty their stomachs faster than adults because kids “have more rapid gastric emptying times,” the timing of meals may be even more important. With little tummies emptying in as few as two hours after a meal, offering midmorning and midafternoon snacks in addition to breakfast and regular meals may cut down on lead absorption in a contaminated environment. And, of course, we should ensure that children wash their hands prior to eating.

So, do preschoolers who eat breakfast have lower levels of lead in their blood? In the first study of its kind, researchers found that, indeed, children who ate breakfast regularly did appear to have lower lead levels, supporting recommendations to provide regular meals and snacks to young children at risk for lead exposure.

Is there anything in food that’s particularly protective? Researchers tested all sorts of foods to find out, and it turns out the “effect of a meal was probably largely due to its content of calcium and phosphate salts but lead uptake was probably further reduced by phytate which is plentiful in whole cereals,” but if calcium and phosphates are protective, you’d think dairy would work wonders. And, indeed, they started giving milk “to workers to prevent lead exposure” ever since calcium was shown to inhibit lead absorption in rats. But, in humans, there’s something in milk that appeared to increase lead uptake, and it wasn’t the fat because they found the same problem with skim milk.

“For over a century milk was recommended unreservedly to counteract lead poisoning in industry,” but this practice was abandoned in the middle of the last century once we learned that milk’s “overall effect is to promote the absorption of lead from the intestinal tract.” What’s the agent in milk that promotes the absorption of lead from the gut? It may be the milk sugar, lactose, though the “mechanism by which lactose enhances lead absorption is not clear.”

The bottom line? “In the past…milk was used as a prophylactic agent to protect workers in the lead industry. Recent studies, however, suggest that this practice is unjustified and may even be harmful.” So, giving people whole grains may offer greater protection against lead uptake.

However, the most potently calcium and phytate-rich food would be tofu. Isolated soy phytonutrients may have a neuroprotective effect, at least this was the case in petri dish-type studies. As you can see at 3:45 in my video, if you add a little lead to nerve cells, you can kill off about 40 percent of them, but if you then give more and more soy phytonutrients, you can ameliorate some of the damage. This is thought to be an antioxidant effect. If you add lead to nerve cells, you can get a big burst of free radicals, but less and less as you drip on more soy compounds.

Nevertheless, even if this worked outside of a lab, cutting down on the toxic effects of lead is nice, but cutting down on the levels of lead in your body is even better. “Because tofu has high content of both calcium and phytic acid phytate…it is biologically plausible that tofu may inhibit lead absorption and retention, thus reducing blood lead levels.” But you don’t know, until you put it to the test.

Tofu consumption and blood lead levels were determined for about a thousand men and women in China. For every nine or so ounces of tofu consumed a week, there appeared to be about four percent less lead in their bloodstream. Those who ate up to two and a half ounces a day had only half the odds of having elevated lead levels, compared to those eating less than about nine ounces a week. Those consuming nearly four ounces a day appeared to cut their odds by more than 80 percent. This was just a cross-sectional study, or snapshot in time, so it can’t prove cause and effect. What you need is an interventional study where you randomize people into two groups, giving half of them some food to see if it drives down lead levels. I cover this in my video Best Food for Lead Poisoning: Chlorella, Cilantro, Tomatoes, Moringa?.


Where does all this lead exposure come from anyway? Check out the first five videos on this series:

For more about blocking lead absorption, as well as what to eat to help rid yourself of the lead you’ve already built up, see:

Or, even better, don’t get exposed in the first place. Find out more in these videos:

Some of my other videos on lead include:

And what about lead levels in women? See:

In health,

Michael Greger, M.D.

PS: If you haven’t yet, you can subscribe to my free videos here and watch my live presentations:

 

Adult Exposure to Lead

“Children in approximately 4 million households in the United States are being exposed to high levels of lead.” As I discuss in my video The Effects of Low-Level Lead Exposure in Adults, “Despite the dramatic decline in children’s blood-lead concentrations over the decades, lead toxicity remains a major public health problem”—and not just for children. Yes, lead is “a devastating neurotoxin,” with learning disabilities and attention deficits in children beginning around blood lead levels of 10 mg/dL, which is when you start seeing high blood pressure and nerve damage in adults, as you can see at 0:41 in my video. But, the blood levels in American adults these days are down around 1 mg/dL, not 10 mg/dL, unless you work or play in an indoor firing range, where the lead levels in the air are so high that more than half of recreational target shooters have levels over 10 mg/dL or even 25 mg/dL.

In fact, even open-air outdoor ranges can be a problem. Spending just two days a month at such a range may quadruple blood lead levels and push them up into the danger zone. What if you don’t use firearms yourself but live in a house with someone who does? The lead levels can be so high that the Centers for Disease Control and Prevention advises those who go to shooting ranges to take “measures to prevent take-home exposure including showering and changing into clean clothes after shooting…, storing clean clothes in a separate bin from contaminated clothing, laundering of non disposable outer protective clothing…and leaving at the range shoes worn inside the firing range,” among other actions. Even if none of that applies and your blood levels are under 10 mg/dL, there is still some evidence of increased risk of hand tremors, high blood pressure, kidney damage, and other issues, as you can see at 1:44 in my video. But what if you’re down around a blood lead level of 1 mg/dL, like most people?

“Blood lead levels in the range currently considered acceptable are associated with increased prevalence of gout,” a painful arthritis. In fact, researchers found that blood levels as low as approximately 1.2 mg/dL, which is close to the current American average, can be associated with increased prevalence of gout. So, this means that “very low levels of lead may still be associated with health risks,” suggesting “there is no such thing as a ‘safe’ level of exposure to lead.”

Where is the lead even coming from? Lead only circulates in the body for about a month, so if you have lead in your bloodstream, it’s from some ongoing exposure. Most adults don’t eat peeling paint chips, though, and autos aren’t fueled by leaded gas anymore. There are specific foods, supplements, and cosmetics that are contaminated with lead (and I have videos on all those topics), but for most adults, the source of ongoing lead exposure is from our own skeleton. I just mentioned that lead only circulates in the body for about a month. Well, where does it go after that? It can get deposited in our bones. “More than 90% of the total body lead content resides in the bone, where the half-life is decades long,” not just a month. So, half or more of the lead in our blood represents lead from past exposures just now leaching out of our bones back into our bloodstream, and this “gradual release of lead from the bone serves as a persistent source of toxicity long after cessation of external exposure,” that is, long after leaded gasoline was removed from the pumps for those of us that who were around back before the 1980s.

So, the answer to where the lead comes from is like Pogo’s We’ve met the enemy and he is us or that classic horror movie scene where the call is coming from inside the house.

The amount of lead in our bones can actually be measured, and research shows higher levels are associated with some of our leading causes of death and disability, from tooth decay and miscarriages to cognitive decline and cataracts. “Much of the lead found in adults today was deposited decades ago. Thus, regulations enacted in the 1970s were too late” for many of us, but at least things are going in the right direction now. The “dramatic societal decreases” in blood lead in the United States since the 1970s have been associated with a four- to five-point increase in the average IQs of American adults. Given that, a “particularly provocative question is whether the whole country suffered brain damage prior to the 1980 decreases in blood lead. Was ‘the best generation’ really the brain damaged generation?”

I’m such a sucker for science documentaries, and my favorite episode of Cosmos: A Spacetime Odyssey was The Clean Room, which dealt with this very issue. Trivia: Carl Sagan was my next-door neighbor when I was at Cornell!

If you want to find out How the Leaded Gas Industry Got Away with It, check out that video. How the Lead Paint Industry Got Away with It is similarly scandalous. Lead in Drinking Water offers the modern-day tale of what happened in Flint, Michigan, and “Normal” Blood Lead Levels Can Be Toxic explores the impacts on childhood development.


I close out this extended video series on lead with information on what we can do about it:

Interested in learning more about lead being absorbed and released in our bones, and how calcium supplements may affect that process? See The Rise in Blood Lead Levels at Pregnancy and Menopause and Should Pregnant Women Take Calcium Supplements to Lower Lead Levels?.

In health,

Michael Greger, M.D.

PS: If you haven’t yet, you can subscribe to my free videos here and watch my live presentations:

 

Why You Don’t Want “Normal” Blood Lead Levels

“By the 1950s, lead—a dangerous neurotoxin that was once buried deep in the ground, far away from humans—had polluted the entire planet.” We have leaded gasoline to thank for this. It’s hard to imagine “a better strategy for maximizing population exposure to a poison than to have it emitted by a ubiquitous mobile source and to line the surfaces of dwellings” and our neighborhoods with it.

“Overall, about 5 million metric tons of lead was deposited in the environment as a result of the combustion of leaded gasoline” by our automobiles before it was regulated. A single busy street could receive more than a metric ton a year, and the lead just built up, decade after decade. Finally, thanks to regulations starting in the 1970s, we stopped spewing so much into the air. As you can see at 0:57 in my video “Normal” Blood Lead Levels Can Be Toxic, as lead use dropped, so did the levels of lead in our blood, resulting in a 98 percent reduction in the percentage of young children with elevated blood lead levels. Of course, the term “elevated” is relative.

“Prior to 1970, lead poisoning was defined by a blood lead concentration of 60 mg/dL or higher” but “since then, the blood lead concentration for defining lead toxicity gradually has been reduced” to 40 mg/dL, then 30 mg/dL, then 25 mg/dL, and then further down to 10mg/dL, as lead levels “previously thought to be safe or inconsequential for children have consistently been shown to be risk factors” for cognitive and behavioral problems.

Currently, an elevated blood lead level is considered to be more than 5 mg/dL. So, under 5 mg/dL, your lead level is considered to be non-elevated or normal. But what does having a “normal” lead level mean?

“Virtually all residents of industrialized countries have bone lead stores that are several orders of magnitude greater than those of our preindustrial ancestors.” If you go to a museum and test the lead levels of ancient skeletons buried a millennium ago, they are a thousand times lower compared to people today, “which indicates the probable existence within most Americans of dysfunctions caused by poisoning from chronic, excessive overexposures to industrial Pb lead.”

You can see a graphical representation of “body burdens of lead” in a preindustrial ancestor, a typical American citizen, and a person with overtly symptomatic lead poisoning, where he might be doubled over in pain, at 2:30 in my video. What the medical and research communities had failed to understand is that they had only concerned themselves with people with actual lead poisoning and those at “typical” lead levels, but “the new value for natural lead levels in [preindustrial] humans shows that typical levels of lead in humans are quite definitely not properly described by the term ‘very low levels’ at all, but instead constitute grossly excessive, 1000-fold over-exposure levels.”

 The bottom line? “No level of lead exposure appears to be ‘safe’ and even the current ‘low’ levels of exposure in children are associated with neurodevelopmental deficits,” including reduced IQ. It could have been a lot worse if we hadn’t started restricting leaded gas. Thanks to falling blood lead levels starting in the 1970s, preschoolers born in the 1990s were two to five IQ points higher than kids like me born before 1976. So, when we see our kids and grandkids being such wizzes at technology that it’s hard to keep up with them, a small part of that may be them not suffering as much lead-induced brain damage as we did. And, what that means for the country is potentially hundreds of billions of dollars of improved productivity because our children are less brain-damaged.

If that seems like a lot for just a few IQ points, as you can see at 4:26 in my video, what you have to realize is that even a small shift in average IQ could result in a 50 percent increase in the number of the “mentally retarded,” millions more in need of special education and services.

So, “removal of lead from gasoline in the United States has been described as one of the great public health achievements of the 20th century, but it almost did not happen.” Indeed, “tremendous pressure by the lead industry itself was brought to bear to quiet, even intimidate, researchers and clinicians who reported on or identified lead as a hazard.” Decent “scientists and health officials faced enormous opposition but never lost sight of the mandate to protect public health.”

Two of the “young, idealistic employees” at the newly formed Environmental Protection Agency, who played key roles in the fight, recount how “naïve [they were] to the ways of Washington”:

“Our youth was also used against us. Our inexperience was cited as a reason for rejecting the lead regulatory proposals….Finally, in retrospect, our youth and inexperience also helped us to succeed in taking on a billion dollar industry. We were too young to know, that regulating lead in gasoline was impossible.”


What about lead exposure after childhood? That’s the topic of my video The Effects of Low-Level Lead Exposure in Adults.

What can we do about lead exposure? See:

If you missed the first three videos in this series, check out:

For the effects of mercury, another heavy metal, see:

In health,

Michael Greger, M.D.

PS: If you haven’t yet, you can subscribe to my free videos here and watch my live presentations:

The Flint Lead Crisis May Be the Tip of the Iceberg

Back in the 1960s, a Pulitzer prize-winning scientist described the problem of childhood lead poisoning as “so well defined, so neatly packaged with both causes and cures known, that if we don’t eliminate this social crime, our society deserves all the disasters that have been forecast for it.”

As I discuss in my video Lead in Drinking Water, “We have the knowledge required to redress this social crime. We know where the lead is, how people are exposed, and how it damages health. What we lack is the political will to do what should be done.” Unfortunately, “many policy makers consider the costs of action primarily in economic and financial terms and ignore the costs of inaction on human health and communities’ livelihoods.”

“At this point, most Americans have heard of the avoidable and abject failure of government on the local, state and federal level; environmental authorities; and water company officials”—in fact, failure across the board—“to prevent the mass poisoning of hundreds of children and adults in Flint, Michigan.”

“A government plan to save some money had led public officials to switch the city’s water source from Lake Huron to the Flint River, once the sewer for the auto industry.” Flint citizens “complained that their tap water was foul and discolored. But city, state, and federal officials took no heed.”

Why? Could it have anything to do with the fact that those who complained are “among the poorest in America, mostly African American”?

Officials failed to act for eighteen months, “until a local pediatrician revealed dramatically elevated lead levels in children’s blood.” An investigation didn’t just find fault but highlighted seeming falsification of water-quality results to keep people in the dark.

Though “the specific breed of alleged government corruption” may be unique to Flint, “the end result might not be so rare in the USA—home to an ageing water system.” As the president of the Children’s Health Fund said, “The Pandora’s box is now wide open.” Flint may be only “the tip of an enormous iceberg”—potentially “just one of a great many icebergs.”

“In addition to lead-based paint and residual lead in soil”—found everywhere from leaded gasoline—“a significant source of childhood lead exposure occurs through drinking water as a result of leaching from lead pipes, lead solder, or brass fixtures.” This has been recognized to be a health issue in the United States as early as 1845, a year our flag only had 26 stars. Yet, the use of lead in water pipes and solder was not restricted until the Safe Drinking Water Act Amendment, 141 years later. Was the city you’re living in built before 1986 when the amendment was passed? Today, the “exact number of lead water pipes currently in use is not clear” as about one in three cities surveyed shrugged their shoulders, “not being able to state how much lead piping exists.”

There are anti-corrosion chemicals you can add to tap water to try to keep the lead in the pipes. Flint could have done that, but it could have cost about $100 a day. Today, “the cost of repairing the Flint water system is estimated at $1.5 billion…”

Let me close with a quote from the heroic pediatrician who blew the whistle, Dr. Hanna-Attisha. She was asked, “What advice would you have for other physicians taking on a whistle-blower role?” She replied, “This is our job. This is why we went to medical school—to help people.”

Wasn’t there lead in paint, too, for the longest time? Yes, and that’s the subject of my video How the Lead Paint Industry Got Away with It. And what about leaded gasoline? How many of you remember going to the pumps and seeing the choice between leaded and unleaded? That’s the subject of How the Leaded Gas Industry Got Away with It.


I also get into what the effects are and what we can do about it. Check out:

In health,

Michael Greger, M.D.

PS: If you haven’t yet, you can subscribe to my free videos here and watch my live presentations:

BioMarin Reports NDA Submission to the US FDA for Vosoritide to Treat Children with Achondroplasia

Shots:

  • BioMarin has submitted an NDA to the US FDA for vosoritide to treat children with achondroplasia
  • The company also reported that EMA has begun validation of MAA for the therapy on 13 Aug, 2020
  • Vosoritide is an investigational, once-daily injection analog of C-type Natriuretic Peptide (CNP) and is potentially the first treatment for achondroplasia in the US

Click here ­to­ read full press release/ article | Ref: Biomarin | Image: Fierce Biotech

How the Lead Paint and Gas Industries Got Away with It

We have known for thousands of years that lead can be toxic and for more than a century that children could be poisoned by lead paint. Since those first cases, the “lead industry has mobilized against the advances of science,” as I discuss in my video How the Lead Paint Industry Got Away with It.

By 1926, lead poisoning was already “of relatively frequent occurrence in children,” yet “the United States continued to allow the use of lead-based paint until 1978.” In contrast, in Europe, many countries said, Hmm, poisoning children? No, thanks. and “banned the use of lead-based paint as early as 1909.” 

“The delay in banning lead-based paint in the United States was due largely to the marketing and lobbying efforts of the lead industry,” profiting from the poison. It knew it couldn’t hold off forever, but the industry boasted that its “victories have been in the deferral of implementation of…regulations.”

And now, “peeling paint turns into poisonous dust,” and guess where it ends up? As a Mount Sinai dean and a Harvard neurology professor put it: “Lead is a devastating poison. It damages children’s brains, erodes intelligence, diminishes creativity…” and judgment and language. Yet, despite the accumulating evidence, the lead industry didn’t just fail to warn people—“it engaged in an energetic promotion of lead paint.” After all, a can of pure white lead paint had huge amounts of lead, which meant huge profits for the industry.

But, as you can see in an old advertisement featured at 1:55 in my video, “[t]here is no cause for worry” if your toddler rubs up against lead paint, because those “fingerprint smudges or dirt spots” can be removed “easily without harming the paint.” Wouldn’t want to harm the paint. After all, “painted walls are sanitary…”

The director of the Lead Industry Association blamed the victims: “Childhood lead poisoning is essentially a problem of slum dwellings and relatively ignorant parents.”

“It seems that no amount of evidence, no health statistics, no public outrage could get industry to care that their lead paint was killing and poisoning children,” but how much public outrage was there really?

“It goes without saying that lead is a devastating, debilitating poison” and that “literally millions of children have been diagnosed with varying degrees of elevated blood lead levels…” Compare that to polio, for example. “In the 1950s, for example, fewer than sixty thousand new cases of polio per year created a near-panic among American parents and a national mobilization that led to vaccination campaigns that virtually wiped out the disease within a decade.” In contrast, despite “many millions of children [who have] had their lives altered for the worse by exposure to lead…[a]t no point in the past hundred years has there been a similar national mobilization over lead.” Today, after literally a century, the Centers for Disease Control and Prevention estimates over five hundred thousand children still suffer from “elevated blood-lead levels.”

The good news is that blood lead levels are in decline, which is celebrated as one of our great public health achievements. But, given what we knew, and for how long we knew, “it is presumptuous to declare the decline in childhood lead poisoning a public health victory.” Indeed, “even if we were victorious…it would be a victory diminished by our failure to learn from the epidemic and take steps to dramatically reduce exposures to other confirmed and suspected environmental toxicants as well as chemicals of uncertain toxicity.”

That’s one of the reasons I wanted to do this series on lead. We need to learn from our history so the next time some industry wants to sell something to our kids, we’ll stick to the science. And, of course, lead levels aren’t declining for everyone.

As the whistle-blowing pediatrician who helped expose the Flint drinking water crisis explained, “The people in Flint have a 20-year lower life expectancy than people in a neighboring suburb. We were already struggling with every barrier to our children’s success. Then we gave them lead.”

Her research showed that the switch in water supplies from the Great Lakes to the polluted Flint River “created a perfect storm” for lead contamination, doubling the percentage of kids with elevated lead levels in their blood, as you can see at 0:42 in my video How the Leaded Gas Industry Got Away with It, whereas out in the suburbs, where the water supply remained unchanged, children’s lead levels stayed about the same. That’s how she knew it was the switch in water supplies. That’s what broke the story of the Flint crisis: a doubling of elevated lead levels.

But wait a moment: Even before the switch from Lake Huron to the polluted Flint River, when everyone was getting the same water, lead levels in children in Flint were twice that of the suburbs. There was already a doubling in elevated lead levels in Flint and other poor communities around the country, but where have all the crisis headlines been? Indeed, even with all the bottled water in the world, the children in Flint will continue to live in a lead-polluted environment.

Many have pointed out the irony that the new water from the Flint River was “so corrosive” that the nearby General Motors plant switched back to a clean water source when it started noticing rust spots on its new parts, all while water quality complaints from Flint residents were being ignored. But, there is an additional irony: General Motors is a major reason why the world is so contaminated with lead in the first place, as GM invented leaded gasoline. “Shortly after manufacture began, workers…began to become floridly psychotic and die.”

“In the wake of blaring headlines” about the lead-poisoned workers, public health leaders “warned of the potential for damage to broad swaths of the population” posed by putting this “well established toxin” into gasoline, “into the daily lives of millions of people. Yet, despite these warnings, millions…were harmed…and this entirely preventable poisoning still occurs today.”

“Virtually all the lead in the environment is there as a result of human activity.” Because we put it there. It used to be locked away, deep underground or under the ocean, but that was before we drove it around the Earth. “In the early 1970s, 200,000 tons of lead was emitted from automobiles in the United States each year, mostly in urban areas.” Had lead not been added to gasoline, the industry would have had to use higher-octane gas, which is less profitable. So, the “oil and lead industries…successfully thwarted government efforts to limit lead in gasoline for 50 years.” But, how were they able to do that? “Early public health warnings were not heeded because the industry assured the scientific community and the public that there was no danger.” I could see how a gullible public might be swayed by slick PR, but how do you manipulate the scientific community? By manipulating the science.

“The lead industry was able to achieve its influence in large part by being the primary supporter of research on health effects of lead,” and it got the best science money could buy. “Long before Big Tobacco, the lead industry understood the inestimable value of purchasing ‘good science.’”

“Consequently, the vast majority of relevant studies of lead in gasoline published [for decades]…were favorable to the lead industries.” What’s more, they “even sent a delegation to try to convince the U.S. EPA administrator that the lead regulation was not necessary because they alleged lead was an essential mineral required for optimum growth and development.”

Of course, the exact opposite is true. Lead is toxic to development. There are, however, nutritional interventions that can help alleviate lead toxicity. For example, there are food components that can help decrease the absorption of lead and help flush it out of your body. I’ve produced a series of three videos on specific dietary interventions, such as particular foods to eat, but—spoiler alert—in general, “food patterns that reduce susceptibility to lead toxicity are consistent with the recommendations for a healthy diet.”

As soon as I learned about the unfolding crisis in Flint, Michigan, I knew I had to take a deep dive into the medical literature to see if there is anything these kids might be able to do diet-wise to reduce their body burden.

Most of the time when I cover a subject on NutritionFacts.org, I’ve addressed it previously, so I just have to research the new studies published in the interim. But I had never really looked deeply into lead poisoning before, so I was faced with more than a century of science to dig through. Yes, I did discover there were foods that could help, but I also learned about cautionary tales like this one about our shameful history with leaded paint. By learning this lesson, hopefully, we can put more critical thought into preventing future disasters that can arise when our society allows profits to be placed over people.


This is part of a series on lead. You can view the rest of the series here:

 You may also be interested in How to Lower Heavy Metal Levels with Diet.

If you enjoyed this article, you may also like:

What relevance does this have for us today? See, for example, my video How Smoking in 1959 Is Like Eating in 2019.

In health,

Michael Greger, M.D.

PS: If you haven’t yet, you can subscribe to my free videos here and watch my live presentations:

What Explains the Egg-Cancer Connection

The reason egg consumption is associated with elevated cancer risk may be the TMAO, considered the “smoking gun” of microbiome-disease interactions.

“We are walking communities comprised not only of a Homo sapiens host, but also of trillions of symbiotic commensal microorganisms within the gut and on every other surface of our bodies.” There are more bacterial cells in our gut than there are human cells in our entire body. In fact, only about 10 percent of the DNA in our body is human. The rest is in our microbiome, the microbes with whom we share with the “walking community” we call our body. What do they do?

Our gut bacteria microbiota “serve as a filter for our largest environmental exposure—what we eat”—and, “technically speaking, food is a foreign object that we take into our bodies” by the pound every day. The “microbial community within each of us significantly influences how we experience a meal…Hence, our metabolism and absorption of food occurs through” this filter of bacteria.

However, as you can see at 1:22 in my video How Our Gut Bacteria Can Use Eggs to Accelerate Cancer, if we eat a lot of meat, including poultry and fish, milk, cheese, and eggs, we can foster the growth of bacteria that convert the choline and carnitine in those foods into trimethylamine (TMA), which can be oxidized into TMAO and wreak havoc on our arteries, increasing our risk of heart attack, stroke, and death.

We’ve known about this “troublesome” transformation from choline into trimethylamine for more than 40 years, but that was way before we learned about the heart disease connection. Why were researchers concerned back then? Because these methylamines might form nitrosamines, which have “marked carcinogenic activity”—cancer-causing activity. So where is choline found in our diet? Mostly from meat, eggs, dairy, and refined grains. The link between meat and cancer probably wouldn’t surprise anyone. In fact, just due to the industrial pollutants, like PCBs, children probably shouldn’t eat more than about five servings a month of meats like beef, pork, or chicken combined. But, what about cancer and eggs?

Studies going back to the 1970s hinted at a correlation between eggs and colon cancer, as you can see at 2:45 in my video. That was based just on so-called ecological data, though, showing that countries eating more eggs tended to have higher cancer rates, but that could be due to a million factors. It needed to be put to the test.

This testing started in the 80s, and, by the 1990s, 15 studies had been published, of which 10 suggested “a direct association” between egg consumption and colorectal cancer, “whereas five found no association.” By 2014, dozens more studies had been published, confirming that eggs may indeed be playing a role in the development of colon cancer, though no relationship was discovered between egg consumption and the development of precancerous polyps, which “suggested that egg consumption might be involved in the promotional” stage of cancer growth—accelerating cancer growth—rather than initiating the cancer in the first place.

This brings us to 2015. Perhaps it’s the TMAO made from the choline in meat and eggs that’s promoting cancer growth. Indeed, in the Women’s Health Initiative study, women with the highest TMAO levels in their blood had approximately three times greater risk of rectal cancer, suggesting that TMAO levels “may serve as a potential predictor of increased colorectal cancer risk.”

As you can see at 4:17 in my video, though there may be more evidence for elevated breast cancer risk with egg consumption than prostate cancer risk, the only other study to date on TMAO and cancer looked at prostate cancer and did indeed find a higher risk.

“Diet has long been considered a primary factor in health; however, with the microbiome revolution of the past decade, we have begun to understand how diet can” affect the back and forth between us and the rest of us inside, and the whole TMAO story is “a smoking gun” in gut bacteria-disease interactions.

Since choline and carnitine are the primary sources of TMAO production, the logical intervention strategy might be to reduce meat, dairy, and egg consumption. And, if we eat plant-based for long enough, we can actually change our gut microbial communities such that we may not be able to make TMAO even if we try.

“The theory of ‘you are what you eat’ finally is supported by scientific evidence.” We may not have to eat healthy for long, though. Soon, Big Pharma hopes, “we may yet ‘drug the microbiome’…as a way of promoting cardiovascular health.”

What did the egg industry do in response to this information? Distort the scientific record. See my video Egg Industry Response to Choline and TMAO.


This is not the first time the egg industry has been caught in the act. See, for example:

For background on TMAO see my original coverage in Carnitine, Choline, Cancer, and Cholesterol: The TMAO Connection and then find out How to Reduce Your TMAO Levels. Also, see: Flashback Friday: How to Reduce Your TMAO Levels.

This is all part of the microbiome revolution in medicine, the underappreciated role our gut flora play in our health. For more, see: 

In health,

Michael Greger, M.D.

PS: If you haven’t yet, you can subscribe to my free videos here and watch my live presentations:

Roche’s Evrysdi (risdiplam) Receives the US FDA’s Approval for SMA in Adults and Children

Shots:

  • The US FDA has approved Evrysdi to treat SMA in adults and children ≥ 2mos. The approval is based on two clinical studies designed to represent a broad spectrum of people living with SMA: FIREFISH in symptomatic infants aged 2-7 mos, and SUNFISH in children and adults aged 2-25yrs.
  • The two studies demonstrated improvements in motor function in people with varying ages and levels of disease severity, including Types 1, 2, and 3 SMA. The filing of MAA to EMA for the therapy is imminent while the therapy has been filed in Brazil, Chile, China, Indonesia, Russia, South Korea, and Taiwan
  • Roche leads the clinical development of Evrysdi as part of a collaboration with the SMA Foundation and PTC Therapeutics and is the only therapy for SMA that can be taken at home. It will be available in the US within 2wks. for direct delivery to patients’ homes through Accredo Health Group

Click here ­to­ read full press release/ article | Ref: Roche | Image: PharmaShots

Brief Examines What’s Known About Children and Coronavirus Transmission as Schools Prepare for Fall

With schools nationwide preparing for fall and the federal government encouraging in-person classes, key concerns for school officials, teachers and parents include the risks that coronavirus poses to children and their role in transmission of the disease. A new KFF brief examines the latest available data and evidence about the issues around COVID-19 and children andMore

The Crowding Out Strategy to Eating Healthier

It may be more expedient politically to promote an increase in consumption of healthy items rather than a decrease in consumption of unhealthy items, but it may be far less effective.

The World Health Organization has estimated that more than a million deaths “worldwide are linked to low fruit and vegetable consumption.” What can be done about it? I explore this in my video Is it Better to Advise More Plants or Less Junk?

There’s always appealing to vanity. A daily smoothie can give you a golden glow as well as a rosy glow, both of which have been shown to “enhance healthy appearance” in Caucasian, Asian, and African skin tones, as you can see at 0:24 in my video.

What about giving it away for free?

A free school fruit scheme was introduced in Norway for grades 1 through 10. Fruit consumption is so powerfully beneficial that if kids ate only an additional 2.5 grams of fruit a day, the program would pay for itself in terms of saving the country money. How much is 2.5 grams? The weight of half of a single grape. However, that cost-benefit analysis assumed this minuscule increased fruit consumption would be retained through life. It certainly seemed to work while the program was going on, with a large increase in pupils eating fruit, but what about a year after the free fruit program ended? The students were still eating more fruit. They were hooked! Three years later? Same thing. Three years after they had stopped getting free fruit, they were still eating about a third of a serving more, which, if sustained, is considerably more than necessary for the program to pay for itself.

There were also some happy side effects, including a positive spillover effect where not only the kids were eating more fruit, but their parents started eating more, too. And, although the “intention of these programs was not to reduce unhealthy snack intakes,” that’s exactly what appeared to happen: The fruit replaced some of the junk. Increasing healthy choices to crowd out the unhealthy ones may be more effective than just telling kids not to eat junk, which could actually backfire. Indeed, when you tell kids not to eat something, they may start to want it even more, as you can see at 2:20 in my video.

Which do you think worked better? Telling families to increase plants or decrease junk? Families were randomly assigned to one of two groups, either receiving encouragement to get at least two servings of fruits and veggies a day, with no mention of decreasing junk, or being encouraged to get their junk food intake to less than ten servings a week, with no mention of eating more fruits and veggies. What do you think happened? The Increase Fruit and Vegetable intervention just naturally “reduced high-fat/high-sugar intake,” whereas those in the Decrease Fat and Sugar group cut back on junk but didn’t magically start eating more fruits and vegetables.

This crowding out effect may not work on adults, though. As you can see at 3:12 in my video, in a cross-section of over a thousand adults in Los Angeles and Louisiana, those who ate five or more servings of fruits and veggies a day did not consume significantly less alcohol, soda, candy, cookies, or chips. “This finding suggests that unless the excessive consumption of salty snacks, cookies, candy, and sugar-sweetened beverages”—that is, junk—“is curtailed, other interventions…[may] have a limited impact….It may be politically more expedient to promote an increase in consumption of healthy items rather than a decrease in consumption of unhealthy items, but it may be far less effective.” In most public health campaigns, “messages have been direct and explicit: don’t smoke, don’t drink, and don’t take drugs.” In contrast, food campaigns have focused on eat healthy foods rather than cut out the crap. “Explicit messages against soda and low-nutrient [junk] foods are rare.”

In the United States, “if one-half of the U.S. population were to increase fruit and vegetable consumption by one serving each per day, an estimated 20,000 cancer cases might be avoided each year.” That’s 20,000 people who would not have gotten cancer had they been eating their fruits and veggies. The U.S. Department of Agriculture recommends we “fill half [our] plate with colorful fruits and vegetables,” but less than 10 percent of Americans hit the recommended daily target. Given this sorry state of affairs, should we even bother telling people to strive for “5 a day,” or might just saying “get one more serving than you usually do” end up working better? Researchers thought that “the more realistic ‘just 1 more’ goal would be more effective than the very ambitious ‘5 a day’ goal,” but they were wrong.

As you can see at 4:56 in my video, those told to eat one more a day for a week, ate about one more a day for a week, and those told to eat five a day for a week did just that, eating five a day for a week. But here’s the critical piece: One week after the experiment was over, the group who had been told to eat “5 a day” was still eating about a serving more, whereas the “just 1 more” group went back to their miserable baseline. So, more ambitious eating goals may be more motivating. Perhaps this is why “in the US ‘5 a day’ was replaced by the ‘Fruits and Veggies—More Matters’ campaign…in which a daily consumption of 7–13 servings of fruits and vegetables – FVs –  is recommended.” However, if the recommendation is too challenging, people may just give up. So, instead of just sticking with the science, policy makers evidently need to ask themselves questions like “How many servings are regarded as threatening?”


For more on appealing to vanity to improve fruit and vegetable consumption, see my videos Eating Better to Look Better and Beauty Is More Than Skin Deep.

What does the science say about smoothies? See:

The flipside of free fruit programs is to tax instead of subsidize. Learn more by checking out my video Would Taxing Unhealthy Foods Improve Public Health?

For more on the paternalistic attitude that you don’t care enough about your health to be told the truth, see my videos Everything in Moderation? Even Heart Disease? and Optimal Diet: Just Give It to Me Straight, Doc.

I explore this same patronizing attitude when it comes to physical activity in How Much Should You Exercise?

In health,

Michael Greger, M.D.

PS: If you haven’t yet, you can subscribe to my free videos here and watch my live presentations:

 

BioMarin Reports the Submission of MAA to EMA for Vosoritide to Treat Children with Achondroplasia

Shots:

  • The MAA is based on P-III study assessing the efficacy and safety of vosoritide, further supported by the long-term safety and efficacy from the ongoing P-II and P-III extension studies and extensive natural history data
  • Following the completion of EMA’s validation, BioMarin expects the initiation of the MAA review to commence in Aug’2020. The company is planning to file NDA to the US FDA in Q3’20
  • Vosoritide is an investigational, once-daily injection analog of C-type Natriuretic Peptide (CNP) for children with achondroplasia and has received FDA’s and EMA’s ODD

Click here to read full press release/ article | Ref: BioMarin | Image: BioMarin




By Nearly a 2-1 Margin, Parents Prefer to Wait to Open Schools to Minimize COVID Risk, with Parents of Color Especially Worried Either Way

Most Say Things Will Get Worse Before They Get Better, and Just Over Half Now Say Their Mental Health is Worse Because of Coronavirus Worry and Stress As state and local officials prepare for the new school year amid the COVID-19 pandemic, parents with children who normally attend school overwhelmingly prefer that schools wait toMore

Did You Know That Reptiles Can Be Great Pets?

Did You Know That Reptiles Can Be Great Pets?

Reptiles as pets? Geckos, and dragons, and snakes! Oh my! To novice keepers and first-time herpetologists, scales may seem more intimidating than fur or feathers, but many species of reptiles make fantastic pets, even for complete beginners. This article covers some of the best animals for those just beginning their journey into reptile ownership: no […]

The Doctor Weighs In

Are the BPA-Free Plastics Like Tritan Safe?

Do BPA-free plastics such as Tritan, have human hormone-disrupting effects? And what about BPS and BPF?

Recent human studies indicate that exposure to the plastics chemical BPA may be associated with infertility, miscarriage, premature delivery, reduced male sexual function, polycystic ovaries, altered thyroid and immune function, diabetes, heart disease, and more. Yet, “[a]s recently as March 2012, FDA stated that low levels of BPA in food are considered safe.” However, just months later, to its credit, the agency banned the use of BPA plastics in baby bottles and sippy cups. Regulators standing up to industry? Maybe I shouldn’t be so cynical! But, wait. The ban was at the behest of the plastics industry. It had already stopped using BPA in baby bottles so it was their idea to ban it.

The industry had switched from BPA to similar compounds like BPF and BPS. So, our diets now contain everything from BPA to BPZ, and the majority of us have these new chemicals in our bodies as well. Are they any safer?

As I discuss in my video Are the BPA-Free Alternatives Safe?, based on the similarities of their chemical structures, they are all predicted to affect testosterone production and estrogen receptor activity, as you can see at 1:40 in my video. However, they were only recently put to the test.

As you can see at 1:50 in my video, we’ve known BPA significantly suppresses testosterone production, and, from “the first report describing BPS and BPF adverse effects on physiologic function in humans,” we know those compounds do, too. Well, kind of. The experiments were performed on the testicles of aborted human fetuses. But, the bottom line is that BPS and BPF seem to have “antiandrogenic anti-male hormone effects that are similar to those of BPA.” So when you’re assured you shouldn’t worry because your sales slip is BPA-free, the thermal paper may just contain BPS instead. What’s more, BPS receipts may contain up to 40 percent more BPS than they would have contained BPA. So BPA-free could be even worse. In fact, all BPA-replacement products tested to date released “chemicals having reliably detectable EA,” estrogenic activity.

This includes Tritan, which is specifically marketed as being estrogen-activity-free. As you can see at 3:06 in my video, however, researchers dripped an extract of Tritan on human breast cancer cells in a petri dish, and it accelerated their growth. This estrogenic effect was successfully abolished by an estrogen blocker, reinforcing it was an estrogen effect. Now, the accelerated growth of the cancer cells from the Tritan extract occurred after the plastic was exposed to the stressed state of simulated sunlight. Only one out of three Tritan products showed estrogen activity in an unstressed state, for instance when they weren’t exposed to microwaving, heat, or UV rays. “Because there would be no value in trading one health hazard for another, we should urgently focus on the human health risk assessment of BPA substitutes.”

In the meanwhile, there are steps we can take to limit our exposure. We can reduce our use of polycarbonate plastics, which are usually labeled with recycle codes three or seven, and we can opt for fresh and frozen foods over canned goods, especially when it comes to tuna and condensed soups. Canned fruit consumption doesn’t seem to matter, but weekly canned vegetable consumption has been associated with increased BPA exposure. If you do use plastics, don’t microwave them, put them in the dishwasher, leave them in the sun or a hot car, or use once they’re scratched. But using glass, ceramic, or stainless steel containers is probably best.


For more on BPA, check out my videos:

Unfortunately, BPA isn’t the only plastics chemical that may have adverse health effects. See:

In health,

Michael Greger, M.D.

PS: If you haven’t yet, you can subscribe to my free videos here and watch my live presentations:

One Way to Treat Asthma and Autoimmune Diseases with Diet

Cutting two teaspoons of salt’s worth of sodium from one’s daily diet can significantly improve lung function in asthmatics

In the 1960s and 1970s, a mystery was emerging. Why were childhood asthma rates between 2 to 5 percent in the developed world but as low as 0.007 percent in the developing world? For example, in the developing world, instead of 1 in 20 kids affected, or even 1 in 50 kids, it could be more like 1 in 10,000 kids—extremely rare. And, when kids moved from a low-risk area to a high-risk area, their risk went up. What was going on? Were they exposed to something new? Did they leave some protective factor behind?

As I discuss in my video How to Treat Asthma with a Low-Salt Diet, all the way back in 1938, scientists showed they could stop asthma attacks by lowering children’s sodium levels. That was done with a diuretic drug, but subsequent dietary experiments showed that diets high in salt seemed to increase asthmatic symptoms, while “lowering the salt decreased the asthmatic symptoms…” This body of evidence was apparently forgotten…until it was picked up again in the 1980s as a possible explanation for why Western countries had higher asthma rates.

Maybe it was the salt.

As you can see at 1:34 in my video, researchers graphed out childhood death from asthma versus family salt purchases, and it seemed more salt meant more death. Just because a family buys more salt doesn’t necessarily mean the kids are eating more, though. The way to find out how much salt someone is eating is to collect their urine over a 24-hour period and measure the amount of sodium, since how much salt we eat is pretty much how much salt we excrete. The way to test for asthma, called a bronchial challenge test, is to look for an exaggerated response to an inhaled chemical. And, indeed, there was a strong correlation between how their lungs reacted and how much sodium they were taking in. However, there are all sorts of food additives, like preservatives, that can trigger these so-called hypersensitivity reactions, so maybe high sodium intake was just a marker for high processed food intake. Maybe it wasn’t the salt at all.

Or maybe it was other components of the diet. For example, the reason sodium may be a risk factor for another inflammatory disease, rheumatoid arthritis, may be that sodium intake is just a marker for increased fish and other meat intake or decreased fruit and vegetable intake. We needed a study where researchers would take asthmatics, change the amount of salt in their diets, and see what happened—and that’s just what came next.

As you can see at 3:16 in my video, researchers doubled the salt intake of ten asthmatics, and lung sensitivity worsened in nine out of ten. There was no control group, though. Is it possible the subjects would have gotten worse anyway?

In a randomized, double-blind, placebo-controlled trial, researchers put everyone on a low-salt diet, but then gave half of the subjects sustained-release sodium pills to bring their salt intake back up to a more normal level and the other half a placebo. After five weeks, the groups switched regimes for another five weeks. That’s how you can randomize people to a true low-sodium diet without them even realizing it. Genius! So what happened? Asthmatics on the salt got worse. Their lung function got worse, their asthma symptoms got worse, and they had to take more puffs on their inhalers. This study compared asthmatics consuming about three teaspoons’ worth of salt a day to those consuming less than one, so they were effectively able to drop their sodium intake by two teaspoons’ worth of salt, as you can see at 4:04 in my video. If you do a more “pragmatic” trial and only effectively reduce people’s salt intake by a half a teaspoon a day, it doesn’t work.

Even if you are able to cut down your sodium intake enough to get a therapeutic effect, though, it should be considered an adjunct treatment. Do not stop your asthma medications without your doctor’s approval.

Millions suffer from asthma attacks triggered by exercise. Within five minutes of starting to exercise, people can get short of breath and start coughing and wheezing such that lung function significantly drops, as you can see at 0:19 in my video Sodium and Autoimmune Disease: Rubbing Salt in the Wound?. On a high-salt diet, however, the attack is even worse, whereas on a low-salt diet, there’s hardly a significant drop in function at all. To figure out why, researchers had the subjects cough up sputum from their lungs and found that those on the high-salt diet had triple the inflammatory cells and up to double the concentration of inflammatory mediators, as you can see at 0:43 in my video. But why? What does salt intake have to do with inflammation? We didn’t know…until now.

“The ‘Western diet,’ high in saturated fatty acids and salt, has long been postulated as one potential…cause for the increasing incidence of autoimmune diseases in developed countries…” The rapidly increasing incidence of autoimmune diseases may be due to an overactivation of immune cells called T helper 17 (Th17) cells. “The development of…multiple sclerosis, psoriasis, type I diabetes, Sjögren’s syndrome, asthma, and rheumatoid arthritis are all shown to involve Th17-driven inflammation,” and one trigger for the activation of those Th17 cells may be elevated levels of salt in our bloodstream. “The sodium content of processed foods and ‘fast foods’…can be more than 100 times higher in comparison to similar homemade meals.”

And, sodium chloride—salt—appears to drive autoimmune disease by the induction of these disease-causing Th17 cells. It turns out there is a salt-sensing enzyme responsible for triggering the formation of these Th17 cells, as you can see at 2:07 in my video.

Organ damage caused by high-salt diets may also activate another type of inflammatory immune cell. A high-salt diet can overwork the kidneys, starving them of oxygen and triggering inflammation, as you can see at 2:17 in my video. The more salt researchers gave people, the more activation of inflammatory monocyte cells, associated with high-salt intake induced kidney oxygen deficiency. But that study only lasted two weeks. What happens over the long term?

One of the difficulties in doing sodium experiments is that it’s hard to get free-living folks to maintain a specific salt intake. You can do so-called metabolic ward studies, where people are essentially locked in a hospital ward for a few days and their food intake is controlled, but you can’t do that long term—unless you can lock people in a space capsule. Mars520 was a 520-day space flight simulation to see how people might do on the way to Mars and back. As you can see at 3:17 in my video, the researchers found that those on a high-salt diet “displayed a markedly higher number of monocytes,” which are a type of immune cell you often see increased in settings of chronic inflammation and autoimmune disorders. This may “reveal one of the consequences of excess salt consumption in our everyday lives,” since that so-called high-salt intake may actually just be the average-salt intake. Furthermore, there was an increase in the levels of pro-inflammatory mediators and a decrease in the level of anti-inflammatory mediators, suggesting that a “high-salt diet had a potential to bring about an excessive immune response,” which may damage the immune balance, “resulting in either difficulties on getting rid of inflammation or even an increased risk of autoimmune disease.”

What if you already have an autoimmune disease? In the study titled “Sodium intake is associated with increased disease activity in multiple sclerosis,” researchers followed MS patients for a few years and found that those patients eating more salt had three to four times the exacerbation rate, were three times more likely to develop new MS lesions in their brains, and, on average, had 8 more lesions in their brain—14 lesions compared to 6 in the low-salt group. The next step is to try treating patients with salt reduction to see if they get better. But, since reducing our salt intake is a healthy thing to do anyway, I don’t see why we have to wait.


What else can we do for asthma? See:

Have you heard that salt reduction was controversial? That’s what the processed food industry wants you to think. Check out the science in:

What are some of the most powerful dietary interventions we have for autoimmune disease? See, for example:

In health,

Michael Greger, M.D.

PS: If you haven’t yet, you can subscribe to my free videos here and watch my live presentations:

Boosting Antiviral Immune Function with Green Tea

Unlike most antiviral drugs, green tea appears to work by boosting the immune system to combat diseases such as genital warts (caused by HPV) and the flu (caused by the influenza virus).

According to one study, “The belief in green tea as a ‘wonder weapon’ against diseases dates back thousands of years.” I’ve talked about it in relation to chronic disease, but what about infectious disease? I explore this in my video Benefits of Green Tea for Boosting Antiviral Immune Function. Interest in the antimicrobial activity of tea dates back to a military medical journal in 1906, which suggested that servicemen fill their canteens with tea to kill off the bugs that caused typhoid fever. “However, this effect of tea was not studied further until the late 1980s” when tea compounds were pitted against viruses and bacteria in test tubes and petri dishes, but what we care about is whether it works in people. I had dismissed this entire field of inquiry as clinically irrelevant until I learned about tea’s effect on genital warts. External genital warts, caused by human wart viruses, “are one of the most common and fastest-spreading venereal diseases worldwide.”

Patients with external genital warts “present with one or several cauliflower-like growths on the genitals and/or anal regions…associated with…considerable impairment of patients’ emotional and sexual well-being.” But rub on some green tea ointment, and you can achieve complete clearance of all warts in more than 50 percent of cases.

If it works so well for wart viruses, what about flu viruses? As you can see at 1:41 in my video, it works great in a petri dish, but what about in people? Well, tea-drinking school children seem to be protected, but you don’t know about the broader population until it’s put to the test. If you give healthcare workers green tea compounds, they come down with the flu about three times less often than those given placebo, as you can see at 2:02 in my video. In fact, just gargling with green tea may help. While a similar effect was not found in high school students, gargling with green tea may drop the risk of influenza infection seven or eight-fold compared to gargling with water in elderly residents of a nursing home, where flu can get really serious.

Unlike antiviral drugs, green tea appears to work by boosting the immune system, enhancing the proliferation and activity of gamma delta T cells, a type of immune cell that acts as “a first line defense against infection.” According to the researchers, “Subjects who drank six cups of tea per day had up to a 15-fold increase in [infection-fighting] interferon gamma production in as little as one week”—but why?

There is in fact a molecular pattern shared by cancer cells, pathogens, and “edible plant products such as tea, apples, mushrooms, and wine.” So, eating healthy foods may help maintain our immune cells on ready alert, effectively priming our gamma delta T cells so they “then can provide natural resistance to microbial infections and perhaps tumors.” I guess I shouldn’t have been so surprised; tea, after all, is a “vegetable infusion.” You’re basically drinking a hot water extraction of a dark green leafy vegetable.


For more on what green tea can (and cannot) do, check out videos such as:

How else can we improve our immune function? See, for example:

In health,

Michael Greger, M.D.

PS: If you haven’t yet, you can subscribe to my free videos here and watch my live presentations:

 

What is COVID19-Related Inflammatory Syndrome In Children?

A rare and life-threatening COVID19-related inflammatory syndrome is rampant in children in the US and the European Union. Children with this mysterious illness – that resembles Kawasaki Disease – show symptoms such as rashes, persistent high fever, inflammation, and loss of functioning of multiple organs such as heart, kidneys, and liver.

Data from New York City shows that out of 83 children who were admitted to the hospital with severe illness and similar symptoms, 25 tested positive for coronavirus. Besides, 23 tested positive for antibodies against COVID-19, which means that they must have contracted infection but recovered.

This has come as a surprise as well as a shock for the public health experts because, since the initial days of the coronavirus pandemic, it has been believed that children are at less risk of getting coronavirus infection. Traditionally, the elderly and people with pre-existing conditions such as obesity, heart disease, and pulmonary disorders have been considered as high-risk groups.

Therefore, while there is no cure or vaccine for coronavirus, parents should look for the warning signs of the COVID19-related inflammatory syndrome in children and rush to the hospital immediately in case of severe sickness.

Some of the symptoms that children may show include the following:

  • Persistent high fever
  • Rashes
  • Breathlessness
  • Severe sickness
  • Vomiting

Such children have been reported to suffer from extreme inflammation of the gut and reduction in the functioning of multiple organs. Therefore, it becomes all the more important to seek emergency medical care and report any signs of extreme sickness in children.

References: https://www.who.int/news-room/commentaries/detail/multisystem-inflammatory-syndrome-in-children-and-adolescents-with-covid-19

https://www.aappublications.org/news/2020/05/14/covid19inflammatory051420

The post What is COVID19-Related Inflammatory Syndrome In Children? appeared first on MediGence.

Best Ways to Engage with Kids during COVID-19 Pandemic Lockdown

COVID19 is a universal crisis, which has an impact on children as well. With a restriction on playing outdoor games to just hanging out with their friends, the lock-down measures can severely impact their physical as well as mental well-being.

Therefore, parents need to spend time with their kids of all age groups and help them understand how to cope with such situations. Parents, especially those of teenagers, should pay attention to the warning signs of social isolation and engage in activities that limit their screen time on mobile, laptops, and i-Pads.

How-to-engage-with-kids during COVID - Pandemic

Parents should engage with their kids as much as possible, irrespective of their age group. It is also important to notice the warning signs of anxiety and stress among children. As a majority of parents around the world are working from home currently, it is easy for them to overlook the need of their child as they juggle to complete their domestic as well as official duties.

A few questions that parents should ask themselves when it comes to the behavior of their children during state-at-home orders include the following:

  • Is my child trying to grab my attention?
  • Is my child spending too much time online or over the phone?
  • Has my child’s eating habits changed during the lock-down?
  • How much time does my child spend in self-isolation?
  • Has my child’s sleeping pattern changed dramatically during the lock-down?
  • Is my child pursuing any hobby?
  • Does he or she engage or participate in family conversations?
  • Do I know what my child’s day is like and how his or her friends are doing?

Answering these questions may call for some self-introspection and the parents will automatically get an answer to what they need to do to make a difference in their child’s like and make them more productive, comfortable, and engaged during the lock-down phase.

References: https://www.unicef.org/coronavirus/covid-19-parenting-tips

https://patient.info/news-and-features/covid-19-how-to-keep-kids-active-during-coronavirus-lockdown

The post Best Ways to Engage with Kids during COVID-19 Pandemic Lockdown appeared first on MediGence.

The Role of Meat and Dairy in Triggering Type 1 Diabetes

Type 1 diabetes “arises following the autoimmune destruction of the insulin-producing pancreatic β [beta] cells…[and] is most often diagnosed in children and adolescents, usually presenting with a classic trio of symptoms” as their blood sugars spike: excessive thirst, hunger, and urination. They need to go on insulin for the rest of their lives, since their own immune systems attacked and destroyed their ability to produce it. What would cause our body to do such a thing? I examine this in my video, Does Paratuberculosis in Milk Trigger Type 1 Diabetes?

Whatever it is, it has been on the rise around the world, starting after World War 2. “Understanding why and how this produced the current pandemic of childhood diabetes would be an important step toward reversing it.” A plausible guess is “molecular mimicry, whereby a foreign antigen (bacterial or viral) provokes an immune response, which cross-reacts” with a similar-looking protein on our pancreas such that when we attack the bug, our own organ gets caught in the cross-fire. Given this, what pancreatic proteins are type 1 diabetics self-attacking? In the 1980s, a protein was identified that we came to realize in the 1990s looked an awful lot like a certain mycobacterial protein. Mycobacteria are a family of bacteria that cause diseases like tuberculosis and leprosy, and, in one study, all newly diagnosed type 1 diabetic children were found to have immune responses to this mycobacterial protein. This didn’t make any sense as incidence of type 1 diabetes has been going up in the industrialized world, whereas TB and leprosy rates have gone down. However, there is one mycobacterial infection in farm animals that has shot up with the industrialization and globalization of animal agriculture: paratuberculosis (paraTB), which causes Johne’s disease in animals. Paratuberculosis is now recognized as a global problem for the livestock industry.

Weren’t there a dozen or so studies suggesting that “cow’s milk exposure may be an important determinant of subsequent type 1 diabetes” in childhood? Indeed. After putting two and two together, an idea was put forward in 2006: Could mycobacterium paratuberculosis from cattle be a trigger for type 1 diabetes? The idea was compelling enough for researchers put it to the test.

They attempted to test the association of Mycobacterium avium paratuberculosis (MAP), the full name for the bug, with type 1 diabetes by testing diabetics for the presence of the bacteria in their blood. Lo and behold, most of the diabetic patients tested positive for the bug, compared to only a minority of the healthy control subjects. This evidence of MAP bacteria in the blood of patients with type 1 diabetes “might provide an important foundation in establishing an infectious etiology,” or cause, for type 1 diabetes. “These results also might possibly have implications for countries that have the greatest livestock populations and high incidence of MAP concurrent with the highest numbers of patients with” diabetes, like the United States.

Johne’s is the name of the disease when farm animals get infected by MAP. The reason diabetes researchers chose to look at Sardinia, an island off the coast of Italy, is because paratuberculosis is present in more than 50 percent of Sardinian herds. Surpassing that, though, is the U.S. dairy herd. According to a recent national survey, 68 percent of the U.S. dairy herd are infected with MAP, especially those cattle at big, industrial dairies, as you can see at 3:33 in my video. Ninety-five percent of operations with more than 500 cows came up positive. It’s estimated the disease costs the U.S. industry more than a billion dollars a year.

How do people become exposed? “The most important routes of access of MAP to the [human] food chain appear to be contaminated milk, milk products and meat” from infected cattle, sheep, and goats. MAP or MAP DNA has been detected in raw milk, pasteurized milk, infant formula, cheese, ice cream, muscle and organ tissues, and retail meat. We know paraTB bacteria survive pasteurization because Wisconsin researchers bought hundreds of pints of retail milk off store shelves from three of the top U.S. milk-producing states and tested for the presence of viable, meaning living, MAP bacteria. They found that 2.8 percent of the retail milk tested came back positive for live paraTB bacteria, with most brands yielding at least one positive sample. If paraTB does end up being a diabetes trigger, then “these findings indicate that retail milk [in the United States] would need to be considered as a transmission vector.” Why hasn’t the public heard about this research? Perhaps because the industry is not too keen on sharing it. Indeed, according to an article in the Journal of Dairy Science: “Fear of consumer reaction…can impede rational, open discussion of scientific studies.”

Not only is MAP a serious problem for the global livestock industry, but it also may trigger type 1 diabetes, given that paraTB bacteria have been found in the bloodstream of the majority of type 1 diabetics tested who presumably are exposed through the retail milk supply as the bacteria can survive pasteurization. But what about the meat supply? MAP has been found in beef, pork, and chicken. It’s an intestinal bug, and unfortunately, “[f]aecal contamination of the carcass in the abattoir [slaughter plant] is unavoidable…” Then, unless the meat is cooked well-done, it could harbor living MAP.

In terms of meat, “ground beef represents the greatest potential risk for harboring MAP…[as] a significant proportion originates from culled dairy cattle,” who may be culled because they have paratuberculosis. These animals may go straight into the human food chain. There also exists greater prevalence of fecal contamination and lymph nodes in ground meat, and the grinding can force the bacteria deep inside the ground beef burger. As such, “given the weight of evidence and the severity and magnitude of potential human health problems, the precautionary principle suggests that it is time to take actions to limit…human exposure to MAP.” At the very least, we should stop funneling animals known to be infected into the human food supply.

We know that milk exposure is associated with type 1 diabetes, but what about meat? As I discuss in my video Meat Consumption and the Development of Types 1 Diabetes, researchers attempted to tease out the nutritional factors that could help account for the 350-fold variation in type 1 diabetes rates around the world. Why do some parts of the world have rates hundreds of times higher than others? Yes, the more dairy populations ate, the higher their rates of childhood type 1 diabetes, but the same was found for meat, as you can see at 2:07 in my video. This gave “credibility to the speculation that the increasing dietary supply of animal protein after World War II may have contributed to the reported increasing incidence of type 1 diabetes…” Additionally, there was a negative correlation—that is, a protective correlation that you can see at 2:26 in my video—between the intake of grains and type 1 diabetes, which “may fit within the more general context of a lower prevalence of chronic diseases” among those eating more plant-based diets.

What’s more, the increase in meat consumption over time appeared to parallel the increasing incidence of type 1 diabetes. Now, we always need to be cautious about the interpretation of country-by-country comparisons. Just because a country eats a particular way doesn’t mean the individuals who get the disease ate that way. For example, a similar study looking specifically at the diets of children and adolescents between different countries “support[ed] previous research about the importance of cow’s milk and [other] animal products” in causing type 1 diabetes. But, the researchers also found that in countries where they tended to eat the most sugar, kids tended to have lower rates of the disease, as you can see at 3:18 in my video. This finding didn’t reach statistical significance since there were so few countries examined in the study, but, even if it had and even if there were other studies to back it up, there are countless factors that could be going on. Maybe in countries where people ate the least sugar, they also ate the most high fructose corn syrup or something. That’s why you always need to put it to the test. When the diets of people who actually got the disease were analyzed, increased risk of type 1 diabetes was associated with milk, sugar, bread, soda, eggs, and meat consumption.

In Sardinia, where the original link was made between paraTB and type 1 diabetes, a highly “statistically significant dose-response relationship” was found, meaning more meat meant more risk, especially during the first two years of children’s lives. So, “[h]igh meat consumption seems to be an important early in life cofactor for type 1 diabetes development,” although we needed more data.

The latest such study, which followed thousands of mother-child pairs, found that mothers eating meat during breastfeeding was associated with an increased risk of both preclinical and full-blown, clinical type 1 diabetes by the time their children reached age eight. The researchers thought it might be the glycotoxins, the AGEs found in cooked meat, which can be transferred from mother to child through breastfeeding, but they have learned that paratuberculosis bacteria can also be transferred through human breast milk. These bacteria have even been grown from the breast milk of women with Crohn’s disease, another autoimmune disease linked to paraTB bacteria exposure.


For a deeper discussion of other possibilities as to why cow’s milk consumption is linked to this autoimmune destruction of insulin production, see Does Casein in Milk Trigger Type 1 Diabetes? and Does Bovine Insulin in Milk Trigger Type 1 Diabetes?.

If we don’t drink milk, though, what about our bone health? See my videos Long-Term Vegan Bone Health and Is Milk Good for Our Bones?.

The vast majority of cases of diabetes in the United States are type 2, though. Ironically, meat may also play a role there. See my videos Why Is Meat a Risk Factor for Diabetes? and How May Plants Protect Against Diabetes? for more information.

For more on the links between milk and diabetes, see my videos Does Casein in Milk Trigger Type 1 Diabetes? and Does Bovine Insulin in Milk Trigger Diabetes?. What about treating and preventing diabetes through diet? Check out How Not to Die from Diabetes and How to Prevent Prediabetes from Turning Into Diabetes.

In health,
Michael Greger, M.D.

PS: If you haven’t yet, you can subscribe to my free videos here and watch my live presentations: